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ABSTRACT

Antimicrobial resistance has become an imminent
concern for public health. As methods for detec-
tion and characterization of antimicrobial resistance
move from targeted culture and polymerase chain
reaction to high throughput metagenomics, appro-
priate resources for the analysis of large-scale
data are required. Currently, antimicrobial resistance
databases are tailored to smaller-scale, functional
profiling of genes using highly descriptive annota-
tions. Such characteristics do not facilitate the analy-
sis of large-scale, ecological sequence datasets such
as those produced with the use of metagenomics for
surveillance. In order to overcome these limitations,
we present MEGARes (https://megares.meglab.org),
a hand-curated antimicrobial resistance database
and annotation structure that provides a founda-
tion for the development of high throughput acycli-
cal classifiers and hierarchical statistical analysis of
big data. MEGARes can be browsed as a stand-alone
resource through the website or can be easily in-
tegrated into sequence analysis pipelines through
download. Also via the website, we provide docu-
mentation for AmrPlusPlus, a user-friendly Galaxy
pipeline for the analysis of high throughput se-
quencing data that is pre-packaged for use with the
MEGARes database.

INTRODUCTION

In recent years, antimicrobial resistance (AMR) has gained
notoriety as a global threat to public health. Surveillance
efforts aimed at the characterization of AMR have received
increasing attention at the international level, as evidenced
by the recent United Nations General Assembly high-level
meeting on antimicrobial resistance, among other calls-
to-arms from groups such as the United Nations, FAO,
WHO, the White House, CDC, FDA, USDA, Public Health
Agency of Canada, and the European Commission (1–8).
Country-specific efforts have been important for monitor-
ing trends in the prevalence of AMR so as to inform policy
aimed at limiting the spread of resistance genes and the bac-
teria that harbor them (6,7). These surveillance programs
have predominately used bacterial culture or polymerase
chain reaction (PCR) to characterize select indicator bac-
teria (e.g. Escherichia coli, Salmonella) or specific gene tar-
gets related to AMR (6–8). While culture- and PCR-based
methods have provided important insights into the preva-
lence of resistance, these techniques are limited to one, or at
most a few, organisms/genes and therefore limit our ability
to study the ecology of antimicrobial resistance within en-
tire bacterial communities at the population level. This lim-
itation is especially impactful to the study of AMR, which
involves complex interactions among bacteria, horizontal
transfer of genes, regulation by a variety of molecular path-
ways, and influences from the host and environment under
study (9,10).

More recently, increasing accessibility to high-
throughput quantitative PCR, microarrays, and high
throughput sequencing (HTS) technologies have enabled
identification of hundreds to thousands of AMR determi-
nants in single genome or metagenomic samples (11–13).
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Metagenomic high-throughput sequencing specifically
is currently being explored for expanded use in public
health surveillance efforts related to AMR (1,4,9,14–17).
However, where initiatives like the Human Microbiome
Project (18) have developed standard pipelines for analysis
of the microbiome (19,20), high-throughput analysis of
AMR metagenomics suffers from a lack of tools specifi-
cally designed for this purpose. This dearth has led to the
suboptimal use of bioinformatics tools that were designed
for whole-genome sequencing data as well as a lack of
consensus around a standardized metagenomics workflow
(21,22). A central component of analytical pipelines used
to characterize microbiome and metagenomic data are
sequence classifiers, which utilize statistical or empirical
information within the (meta)-genomic sequence data
to assign a taxonomic label to a given DNA fragment.
For classification of 16S rRNA gene sequence data, the
mothur and Qiime microbiome pipelines make use of the
Ribosomal Database Project (RDP), SILVA and Green-
genes databases (23–25). In part, these 16S databases have
enabled the success of pipelines including mothur and
Qiime, as sequence classification is a critical step of the
bioinformatics characterization of unknown DNA.

Several databases currently exist that thoroughly describe
AMR genes and offer tools for analysis. However, these re-
sources are primarily designed for for screening of a single
genome or a few assembled contigs. These resources con-
tain several limitations that hinder their utility for count-
based analyses and classification of microbial community
data using automated pipelines (26–28). Such limitations
include the use of annotation headers with lengthy descrip-
tions and non-conforming text symbols that do not inter-
face well with UNIX- and Linux-based programs; errors in
sequences and their annotations that are a result of semi-
automated retrieval from public repositories; accessions
with multiple AMR genes within a single sequence (e.g.
plasmids, in the case of the NCBI Lahey beta-lactamase
archive); and cyclical annotation structures with a large
number of labels that do not lend themselves to certain
statistical methods (e.g. naive Bayes) and the analysis of
count data. While the contribution of the Antibiotic Re-
sistance Ontology (ARO) developed by the Comprehensive
Antibiotic Resistance Database (CARD) (28) is a notable
improvement in AMR biocuration, and such a classifica-
tion scheme is very useful for functional annotation, the
ARO’s highly descriptive and large annotation graph is not
an optimal structure for other genomic efforts like ecolog-
ical profiling and the construction of sequence classifiers.
The use of databases with cyclical annotation graphs like
the ARO can result in falsely inflated counts or the confla-
tion of assignments in sequence classification. Additionally,
while several existing databases offer BLAST functionality
for data analysis, they do not provide a start-to-finish, GUI-
based pipeline for easy integration into available bioinfor-
matics tools. Researchers can currently use these existing
databases to characterize AMR determinants within micro-
bial communities with metagenomic sequencing data, but
to do so they must substantially modify existing classifica-
tion schemes, or they must verify each classification to en-
sure that it is assigned correctly and not double counted.

Thus, in order to further facilitate the characterization
of AMR determinants in the context of large metage-
nomic studies, we present MEGARes, a hand-curated
AMR database that has been specifically annotated for use
in HTS data processing, the construction of sequence classi-
fiers, and statistical analysis. Accessions in MEGARes have
been manually verified for accuracy at the nucleotide and
protein levels, and every annotation header has a standard
format without non-conforming symbols, such that the
database can be seamlessly integrated into custom script-
ing. To encourage the use of HTS of metagenomic samples
for investigation of the ecology of AMR, we also provide
an accessible, user friendly pipeline (named AmrPlusPlus)
that is designed for metagenomic analysis and is fully inte-
grated with the MEGARes database. Software used in this
bioinformatic pipeline can be installed locally on Mac- and
Linux-based operating systems using Docker, a software
containerization platform, which aids in the portability and
installation of complex pipelines like AmrPlusPlus (29).

DATABASE MOTIVATION AND DESCRIPTION

In sequence data analysis, the manner in which data are la-
beled can have a drastic impact on the results obtained, and
the structure of annotation systems are therefore critical to
analysis and correct interpretation. For example, the stan-
dard phylogenetic taxonomic classification scheme has been
useful in microbiome analyses due in part to key character-
istics of its annotation structure. Firstly, the standard phy-
logenetic taxonomy is hierarchical in nature. By drawing an
edge between each taxonomic node, we can create a graph,
linking the nodes together through their respective ranks,
i.e. Bacteria is linked with Bacteroidetes, which is linked
with Bacteroidales, and so on. One valuable aspect of the
standard phylogenetic taxonomic structure is that its anno-
tation graph is a tree; no two higher level ranks are linked to
the same lower level rank, i.e. the graph has no cycles (Fig-
ure 1). For example, one bacterial genus can contain multi-
ple species, but one species cannot belong to two different
genera. Additionally, each organism is classified to exactly
one location in the tree, such that an organism like Listeria
monocytogenes has a unique classification path through the
annotation graph. Because of this, we can assume indepen-
dence between groups within the same level, which permits
the use of faster methods such as the analytical calculation
of probabilities using methods like naive Bayes. For large,
complex data sets such as those that result from deep se-
quencing of metagenomic samples, having fast and robust
statistical methods available is important, as the size of the
data does not allow the use of computational methods that
are substantively slower, such as BLAST.

Additionally, the use of an acyclical annotation structure
to label a reference database is critical for ensuring the ve-
racity of output from count-based analyses (i.e. the number
of reads or contigs that align to specific genes in the refer-
ence database). A cyclical graph structure can result in ar-
tificial count inflation when a single sequence (i.e. read or
contig) is assigned to multiple categories at the same an-
notation level (i.e. if a gene is classified under two classes
of resistance, such as rpoB-daptomycin and rpoB-rifampin).
Such cycles also create uncertainty when training sequence



D576 Nucleic Acids Research, 2017, Vol. 45, Database issue

Figure 1. (A) This annotation graph contains no cycles (is a tree), as nodes 1 and 2 do not share children and are therefore independent. (B) In contrast,
node 3 and node 4 share node 5 as a child, which creates a cycle in the annotation graph and statistical dependencies between nodes 3 and 4. (C) The
MEGARes annotation structure for two gene groups (rpoB and iri) that confer resistance to the rifampin class of antimicrobials. This annotation scheme
contains no cycles. (D) The CARD annotation structure for the same two gene groups (rpoB and iri).

classifiers on different annotation labels that share an iden-
tical sequence, as the classifier has difficulty in assigning the
shared sequence to one category or the other. Therefore, an
acyclical annotation structure, such as is used in the micro-
biome classification, is better suited to count-based analy-
sis and classification within the context of an ecological- or
community-level investigations.

With MEGARes, we have created an annotation struc-
ture that shares properties with the standard phylogenetic
taxonomic annotations: each AMR sequence has a unique
path through the annotation graph, and the graph contains
no cycles. In order to facilitate hierarchical statistical analy-
sis and the creation of robust classifiers, we have minimized
the number of annotation levels and nodes such that each
group has as many sequences as possible without creating
nonsensical annotations.

We compare our database primarily to CARD, which
has been recently updated and thoroughly curated (28). In
contrast to the MEGARes annotation scheme, CARD’s
ARO has many more nodes and five additional classifica-
tion levels, which results in sparse sequence membership
within each node (Supplementary Table S1). Additionally,
the CARD ARO contains 2966 cycles, which is a result of
CARD’s comprehensive annotation structure; thus, child
nodes can have more than one parent node at any given
level. Therefore, while the CARD ARO is comprehensive
and serves the purpose of providing a descriptive labeling
of each AMR sequence, its structure is not as conducive to
statistical applications in high throughput analysis. Because
of this, we believe MEGARes is a valuable, novel resource

for enabling the high throughput analysis of AMR, partic-
ularly in a metagenomic, large data context.

Hierarchical annotation

The creation of an optimized annotation scheme for high
throughput analysis involves a balance between preserv-
ing nucleotide identity and preserving functional grouping
within gene clusters: sequence classifiers work best when
classes are grouped by nucleotide similarity, however this
can segregate biologically relevant categories into multiple
groups, which in turn can result in model output that is dif-
ficult to interpret. Likewise, when biological category is pri-
oritized over nucleotide identity, sequence classifiers that
rely on sequence similarity cannot be accurately built. To
this end, we have annotated MEGARes in such a way that
identity is preserved and balanced with molecular function
within sequence groups.

The MEGARes annotation scheme consists of three hi-
erarchical levels regarding AMR genes: Drug Class, Mech-
anism, and Group. The Class level represents the major
molecular category of resistance to different classes of an-
timicrobial drugs, e.g. tetracyclines, beta-lactams, glycopep-
tides. The Mechanism level is a child of the Class level and
corresponds to the molecular mechanism that confers re-
sistance to antibiotics. For example, tetracycline ribosomal
protection proteins are a resistance mechanism within the
tetracycline class; their function is to utilize GTP to free the
tetracycline molecule from its binding site on the ribosome,
resulting in resistance to tetracycline (30). Because molec-
ular function often corresponds to conserved protein do-
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mains (as noted below in the description of clustering anal-
ysis), the Mechanism level of MEGARes preserves local re-
gions of sequence similarity while allowing for variation in
non-conserved regions. This differential sequence variation
across the length of genes within Mechanism-level nodes is
the natural result of the clustering procedure used during
the verification and development of the MEGARes anno-
tation structure, which is described in detail below. In ad-
dition, this underlying clustering method is ideal for mod-
els that aim to detect conserved regions of biological func-
tion, for example with profile Hidden Markov Models. The
Group level is a child of the Mechanism level and is cat-
egorized based on information contained within the gene
or operon. The Group annotation is meant to provide in-
formation on the major gene category for a given class of
antimicrobials and varies depending on the class in ques-
tion. For instance, the beta-lactamase genes contain group
annotations corresponding to the gene names with which
they are associated (31), e.g. SHV or TEM beta-lactamase.
However, for classes such as the vancomycin resistance
genes, the Group annotations correspond to the functional
category within the vancomycin gene cluster operons, e.g.
VanD-type accessory protein, VanA-type resistance pro-
tein. Again, this is meant to preserve the nucleotide identity
within groupings and maintain reasonable biological cate-
gories across the database.

Data sources and curation

The comprehensive core database content was obtained
by non-redundant compilation of sequences contained in
Resfinder (November 2015), ARG-ANNOT (November
2015), the Comprehensive Antibiotic Resistance Database
(CARD, v1.0.7), and the National Center for Biotech-
nology Information (NCBI) Lahey Clinic beta-lactamase
archive (December 2015) (26–28,32). All data were included
in the curation workflow except for the CARD protein wild-
type sequences, as these represent genes that do not carry a
known resistance mutation. Prior to inspection, sequences
were collapsed at 100% identity using BLAT (v36×1) (33)
with a maximum gap allowance of 0 to produce a set of
unique sequences. For entries that contained header infor-
mation with an NCBI accession number, Coding Sequence
(CDS) regions were obtained by querying NCBI using the
BioPython (v1.66) (34) module and the NCBI Entrez eU-
tils interface. Several entries, notably from the Lahey beta-
lactamase archive, contained multiple CDS regions within
the same sequence. In order to preserve sequence identity
within gene annotation groups, these multiple CDS acces-
sions were split into separate sequences along CDS bound-
aries and re-annotated based on the NCBI CDS annota-
tion. For example, entries corresponding to plasmids that
contained multiple antimicrobial genes were broken into
gene fragments according to their CDS start/stop locations
and were re-annotated with their respective gene category.

Gene annotations were validated through a combination
of translated BLAST at >90% identity and gene clustering
with USEARCH (35) at >80% identity. Each annotation
was then manually inspected for accuracy. Sequences were
considered potentially misannotated if any of the follow-
ing were not concordant: the BLAST annotation and clus-

ter annotation, the cluster annotation and current anno-
tation, or the BLAST annotation and current annotation.
This subset of questionably annotated genes was manually
approved or re-annotated based on results from additional
nucleotide and protein BLAST against the NCBI non-
redundant nucleotide and protein databases (36). Genes
that were identified as not related to AMR were excluded
from the database. The 3824 resulting genes comprise a
comprehensive and manually curated database of AMR
genes that are derived from all high quality data sources that
are currently available.

Database schema and features

MEGARes is structured as a relational database where the
FASTA header of the gene sequence is the primary key: a
FASTA file contains the gene sequences, and the annota-
tions are stored in an additional comma-separated file. The
database schema is updated through several Python scripts
that allow for reproducible amendment of database infor-
mation and the addition of new sequences following verifi-
cation and header formatting.

Interactive browsing of the database annotations and
sequences is offered through the web interface at (http:
//megares.meglab.org). For quick and focused searches, we
offer a keyword-based search on the homepage of the web-
site; users can input partial-match keywords and receive
a comprehensive listing of matches to both database ac-
cession headers and nodes within the annotation file. Re-
sults of search refinements are updated in real-time. Alter-
natively, users can explore the hierarchical annotation struc-
ture through the ‘Browse’ feature by clicking on the an-
notation terms, which automatically submits queries to a
MySQL server where the sequence and annotation tables
are stored. A brief description of each annotation term is
provided along with reference to primary literature sources
that further describe the annotation category. For each gene
annotation, the browsing interface lists both its children
terms as well as other terms within the same level, allow-
ing the user to navigate through the database by node. Dur-
ing any search or browsing session, sequences labeled with a
given term can be downloaded as a flat FASTA file by click-
ing on the ‘Download Sequences’ link. Alternatively, the
full database flat files can be downloaded as a compressed
archive through the ‘Download’ option in the navigation
bar.

The gene content of MEGARes is summarized in Sup-
plementary Figure S1 and is provided as a D3 (37), inter-
active graphic available on the MEGARes website. To pro-
vide a reproducible mapping of sequence data, a file linking
each sequence in MEGARes to the database and gene ID
of origin can be downloaded as a flat file from the website.
For users who wish to use MEGARes for analysis of large
HTS datasets, we also provide an integrated bioinformat-
ics pipeline that scales to large data more effectively than
BLAST, which is described below.

AmrPlusPlus pipeline

A bottleneck to the widespread adoption of metagenomic
methods for AMR analysis is the lack of accessible start-
to-finish pipelines for HTS data processing. Furthermore,

http://megares.meglab.org
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even if pipelines were defined, researchers would face sub-
stantial roadblocks when attempting to install dozens of
different tools, many with multiple levels of dependencies
(38). To overcome these barriers and provide accessibil-
ity to the MEGARes database, we offer AmrPlusPlus, a
pipeline for resistome analysis of metagenomic datasets.
The pipeline is fully integrated with Galaxy (39), an accessi-
ble, web-based platform that wraps command-line tools in
an easy-to-use graphical interface. As such, AmrPlusPlus is
an easy-install pipeline for local use; all tools required to
run the workflow are pre-packaged and ready for use once
downloaded onto the researcher’s computer with a Mac-
or Linux-based operating system. This ensures that users
do not have to find, install, and configure the correct ver-
sion of every tool required to run the workflow. Once down-
loaded, only four inputs are required: a resistance database
in the form of a FASTA file, a host/background genome
in FASTA format for the removal of host/background con-
tamination, and a single or pair of FASTQ datasets. Each
component in the workflow is configured to use default set-
tings but can be modified by the user if desired. Installation
and documentation can be found in the pipeline documen-
tation (http://megares.meglab.org/amrplusplus). We have
made the source files publicly available on GitHub (https:
//github.com/cdeanj/galaxytools).

The AmrPlusPlus pipeline consists of five steps that allow
for identification, quantification and read-pair haplotyping
of AMR genes within metagenomic sequence data (Figure
2). Here, we provide a brief overview of the workflow, which
is described in detail in the online documentation.

Read trimming and filtering. Trimmomatic (40) is used to
remove adapter contamination and low quality reads. Ad-
ditionally, for the analysis of host-associated metagenomic
samples, the removal of contaminating host DNA can
improve results. Therefore, the Burrows-Wheeler-Aligner
(BWA) (41) is used to align sequence reads to a user selected
host genome, and subsequent removal of aligned reads is
performed with Samtools (42).

Align remaining reads to AMR database. Non-host reads
from the previous step are then aligned to the user-
specified resistance database using BWA; if users wish to
change default BWA alignment criteria in order to relax
or tighten identity matching requirements, they are able to
do so through the Galaxy interface. By default, we offer
MEGARes as the reference AMR database to provide a
pipeline that is integrated with a database designed specifi-
cally for HTS analysis; however, users can also provide their
own reference database. Output from this step is a BAM file
that is then sorted and converted to a SAM file using Sam-
tools. This SAM file is provided as input to Steps (3), (4) and
(5), which utilize custom C++ tools developed specifically
for resistome analysis.

Resistome identification. This program uses the SAM file
from the alignment step to identify all AMR genes within
the sequence data, using a user-specified gene fraction
threshold. We define gene fraction as the proportion of
nucleotides in a reference sequence to which at least one
read from the sequence data is aligned. Given that short-

Figure 2. A pipeline workflow diagram describing the steps involved in the
AmrPlusPlus pipeline. The tan box denotes input files, blue boxes repre-
sent steps in the pipeline, green boxes denote outputs and arrows show the
directionality of the workflow.

read metagenomic data can result in false positive AMR
gene identifications (43), the AmrPlusPlus pipeline can filter
out genes with a gene fraction below a user-defined thresh-
old using a custom C++ program called ResistomeAna-
lyzer (source code available at https://github.com/cdeanj/
resistomeanalyzer). Counts of aligned reads are recorded at
the gene, group, mechanism and class levels and provided as
output to the user in tab-delimited format, which can then
be used for statistical analysis.

Rarefaction analysis. The RarefactionAnalyzer pro-
gram can perform rarefaction analysis of metage-
nomic data (source code available at https://github.
com/cdeanj/rarefactionanalyzer); for more informa-
tion, see the online documentation for AmrPlusPlus
(http://megares.meglab.org/amrplusplus).

SNP detection. There are many programs available for
identifying Single Nucleotide Polymorphisms (SNPs) in ge-
nomic data (44). However, because such programs were
developed for single organism genomic sequencing, they
utilize statistical assumptions that are not appropriate for
metagenomic data. For instance, the copy number of genes
can vary within organisms, between organisms, and also
with the plasmid copy number. Few assumptions, if any, can

http://megares.meglab.org/amrplusplus
https://github.com/cdeanj/galaxytools
https://github.com/cdeanj/resistomeanalyzer
https://github.com/cdeanj/rarefactionanalyzer
http://megares.meglab.org/amrplusplus
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be made about the mutation rate, population structure, or
presence of bi- and tri-allelic minor alleles, as these metrics
vary widely depending on the environment and population
under study. Furthermore, the definition of an AMR ‘gene’
varies between classes and is currently debated within the
scientific community, leading to confusion about whether
a SNP denotes a gene haplotype or a new gene (45). This
is particularly true for standards within the beta-lactamase
class, which define a new ‘gene’ as any sequence with at
least 1 amino acid difference from any known sequence. For
MEGARes, we have adhered to formal and informal con-
ventions for defining AMR genes, and therefore each acces-
sion within the database is considered the reference ‘gene’
as defined within existing databases. By extension, any SNP
identified with respect to a reference sequence is defined
as a SNP within a gene. In addition, while the traditional
goals of SNP calling have been functional and population
genetic analyses, the use of metagenomic data in surveil-
lance efforts could portend a new use for SNPs; namely,
as a type of DNA ‘fingerprint’ for tracking AMR genes
over time and geography. Therefore, we provide a tool called
SNPFinder that reports all possible SNPs and read pair
haplotypes identified within a metagenomic sample and al-
lows the user to determine which SNPs and read-pair hap-
lotypes are significant based on their knowledge of the re-
search question and population under study (source code
available at https://github.com/cdeanj/snpfinder). The SNPs
detected by SNPFinder are not intended to predict whether
genetic changes will affect the resistance phenotype, but in-
stead will allow genetic comparisons for ecological tracking,
evolutionary studies, or other investigations of SNP pro-
files. SNPFinder takes each read (or read pair) that aligned
to the resistance database and compares the read sequence
to the reference sequence on a nucleotide-by-nucleotide ba-
sis. SNPs that fall on the same read pair are recorded as
a read-pair haplotype within the corresponding resistance
gene, and read-pair haplotypes within the same resistance
gene are tallied to provide a count of occurrence of each
haplotype by gene. The output of this program is a tab-
delimited file with fields for gene, read-pair haplotype pat-
tern, and count.

DISCUSSION

With MEGARes, we have presented a resource tailored
specifically for the high throughput analysis of AMR genes
within metagenomic data. MEGARes does not purport to
replace the role of databases such as CARD and Resfinder,
which provide users with rich gene descriptions and func-
tional SNP annotation tools. Instead, MEGARes focuses
specifically on resistome analysis as a natural extension of
metagenomics data. As such, it forgoes detailed gene de-
scriptions and multi-category annotations in favor of a sim-
pler, hierarchical and acylic annotation scheme and short,
script-friendly gene headers. We have deliberately main-
tained a relatively sparse annotation hierarchy in the hopes
that MEGARes can serve as a solid foundation for further
development of resistome-centered analytical methods such
as sequence classifiers and hierarchical statistical models. In
order to facilitate increased use of metagenomic datasets in
resistome analyses, we have included MEGARes in Amr-

PlusPlus; however, the database is also readily download-
able for use in additional programmatic workflows of the
user’s choosing. AmrPlusPlus not only increases the acces-
sibility of resistome analysis, but also provides users with 3
new integrated tools (ResistomeAnalyzer, RarefactionAna-
lyzer and SNPFinder) which we hope will help to bridge the
gap between the bioinformatics and the statistical analysis
of metagenomics data. As the scientific and regulatory com-
munities explore the use of metagenomics in AMR surveil-
lance and public health epidemiology (14,46), we hope that
MEGARes proves to be a useful and usable tool for many
researchers in the area of AMR.
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