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ABSTRACT Quality control filtering of single-nucleotide polymorphisms (SNPs) is a key step when analyzing genomic data. Here we
present a practical method to identify low-quality SNPs, meaning markers whose genotypes are wrongly assigned for a large
proportion of individuals, by estimating the heritability of gene content at each marker, where gene content is the number of copies of
a particular reference allele in a genotype of an animal (0, 1, or 2). If there is no mutation at the marker, gene content has an additive
heritability of 1 by construction. The method uses restricted maximum likelihood (REML) to estimate heritability of gene content at each
SNP and also builds a likelihood-ratio test statistic to test for zero error variance in genotyping. As a by-product, estimates of the allele
frequencies of markers at the base population are obtained. Using simulated data with 10% permutation error (4% actual error) in
genotyping, the method had a specificity of 0.96 (4% of correct markers are rejected) and a sensitivity of 0.99 (1% of wrong markers
are accepted) if markers with heritability lower than 0.975 are discarded. Checking of Mendelian errors resulted in a lower sensitivity
(0.84) for the same simulation. The proposed method is further illustrated with a real data set with genotypes from 3534 animals
genotyped for 50,433 markers from the Illumina PorcineSNP60 chip and a pedigree of 6473 individuals; those markers underwent very
little quality control. A total of 4099 markers with P-values lower than 0.01 were discarded based on our method, with associated
estimates of heritability as low as 0.12. Contrary to other techniques, our method uses all information in the population simulta-
neously, can be used in any population with markers and pedigree recordings, and is simple to implement using standard software for
REML estimation. Scripts for its use are provided.
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IN PLANT and animal genetics, a large number of platforms
for genotyping of single-nucleotide polymorphisms (SNPs)

have appeared in recent years, in addition to the use of
techniques to impute from low-density to high-density chips.
However, these techniques are not without technical failures.
Errors in genotypes can be due to wet laboratory errors (poor
DNA samples, poor readings, etc.), different biochemistry in
marker panels, label switching, or mistakes in pedigree record-
ing. For example, Wiggans et al. (2012) removed 127 mark-
ers out of 2886 in the Bovine3K BeadChip (Illumina, Inc.,

San Diego, CA) because they showed .2% Mendelian con-
flicts. Errors also can arise from imputation procedures; for
instance, if a marker is erroneously located in the map, its
flanking markers will be wrong, as will be the imputation
analysis (Hickey et al. 2012; Wang et al. 2013). The quality
of genotypic data in genomic evaluations thus has been
carefully considered for some time, and a number of proce-
dures for quality control (QC) have been developed. The QC
filtering of SNPs in genomic evaluation can increase accu-
racy, reduce computational effort, and improve stability of es-
timates of the effects of the remaining SNPs (Wiggans et al.
2009). We propose a method based on maximum likelihood
to check the quality of marker genotypings in a possibly com-
plex pedigreed population that is partially or completely geno-
typed for a set of biallelic markers. This method specifically
aims at detecting loci for which a large number of indi-
viduals are wrongly genotyped. First, we briefly describe

Copyright © 2015 by the Genetics Society of America
doi: 10.1534/genetics.114.173559
Manuscript received September 26, 2014; accepted for publication December 18,
2014; published Early Online January 6, 2015.
Supporting information is available online at http://www.genetics.org/lookup/suppl/
doi:10.1534/genetics.114.173559/-/DC1
1Corresponding author: INRA, UMR GenPhySE, CS52627, F-31326 Castanet-Tolosan,
France. E-mail: andres.legarra@toulouse.inra.fr

Genetics, Vol. 199, 675–681 March 2015 675

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.173559/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.173559/-/DC1
mailto:andres.legarra@toulouse.inra.fr


current methods. Then the method is presented, and results
using publicly available and simulated data are shown.

Quality Control of Genotypes

The most commonly used QC filters include QC on individ-
uals for call rate, duplicates, and parent-progeny conflicts
and QC on SNPs for call rate, minor allele frequency (MAF),
departure from Hardy-Weinberg equilibrium, and in partic-
ular, Mendelian conflicts [see Wiggans et al. (2009) for a
general description]. The latter are usually checked using data
from trios and parent-offspring pairs (Wiggans et al. 2009,
2012). However, Mendelian-consistent errors usually go unde-
tected (e.g., an offspring Aa from parents Aa and AA is geno-
typed as AA). Another method involves checking that the
progeny of one heterozygote male mated to several females
has an average heterozygosity of 0.5 (Leroy et al. 2013).

Cheung et al. (2014) proposed a method for detecting
both Mendelian-inconsistent and occasionally Mendelian-
consistent errors tailored to small and moderately large hu-
man pedigrees (e.g., 100 subjects). While this and similar
error-detection procedures are computationally efficient for
detecting genotyping errors at the marker level given inferred
pedigree descent patterns and may allow tracing these occa-
sionally occurring genotyping errors in markers at the subject
level, it is not immediately known whether this method is
equally applicable to plant or livestock data that are very large
in pedigree size (e.g., .1000) and especially when the moti-
vation is to detect suspicious markers in which a considerable
proportion of subjects has genotyping errors.

The application of these QC filters (except Cheung et al.
2014) does not use all available information from pedigree
and markers. For instance, consider 10 full sibs, 5 with ge-
notype AA and 5 with genotype aa, issued from both parents
heterozygotes. This segregation distortion is not a Mendelian
error, but it is a very unlikely situation. The problem becomes
very complex for large pedigrees in which only a fraction
of the animals is genotyped. For instance, VanRaden (2008)
considered a pedigree with 3000 genotyped bulls, all con-
nected, whose pedigree spanned 23,105 individuals.

Here we present a practical method to identify low-quality
SNPs across individuals by considering gene content as a
quantitative trait and testing the null hypothesis h2 = 1. The
sensitivity and specificity of the method are evaluated by
simulation of a pig breeding data set, and the method is
illustrated with a real pig breeding data set.

Materials and Methods

Theory of the Method

Gene content as a quantitative trait: Gene content z at one
marker is the number of copies of a particular reference allele
(e.g., z= 0, 1, or 2 for AA, AG, and GG) (Falconer and Mackay
1996). In other words, (observed) gene content can be seen as
a quantitative trait where the map of genotype to phenotype is

f0; a; 2agfor the three genotypes and the additive effect a of
the reference allele (G in the preceding example) is exactly 1.
Therefore, there is neither dominance nor epistasis. In addi-
tion, unless there is a mutation at the marker, and if the marker
is genotyped accurately, there is no error associated with the
phenotype. Thus, and by construction, the heritability of gene
content is 1, and all variation is strictly additive genetic. The
mean of z in the base population is 2p, where p is the allelic
frequency at the base population, whereas its variance is 2pq
and q = 1 2 p.

The covariance between both gene contents from two
individuals is Covðzi; zjÞ ¼ Aij2pq [Cockerham 1969, equa-
tion (8)], where Aij is the additive relationship between
two individuals, usually computed from pedigree [see Toro
et al. (2011) for a more detailed explanation]. This fact has
been highlighted recently and used by McPeek et al. (2004)
and Gengler et al. (2007) in similar contexts. Therefore, if z
contains gene content for a set of genotyped individuals,
CovðzÞ ¼ A222pq, where A22 is a matrix with additive rela-
tionships across genotyped individuals. Moreover, A22 is
a submatrix of the whole-pedigree relationship matrix A.
For each marker, we may write a linear model for gene
content: z ¼ 1ð2pÞ þ uþ e, where u is the deviation of each
individual from this mean, and e is an error term that should
be 0 in the absence of genotyping errors. In this case, s2

e ¼ 0
so that h2 ¼ s2

u=ðs2
u þ s2

e Þ is equal to 1 with no genotyping
errors. We recall that CovðuÞ ¼ A22s

2
u and s2

u ¼ 2pq.

Estimation of heritability: When analyzing complex pedi-
grees, a common method to estimate heritabilities is restricted
maximum likelihood (REML) (Patterson and Thompson 1971).
REML estimators were developed assuming normality, a sit-
uation that does not arise for gene content, which is not
a continuous trait. However, REML has optimal properties
as an iterated minimum-variance quadratic unbiased esti-
mator (known as MIVQUE), which has minimum variance
(Searle et al. 1992). The assumption of multivariate nor-
mality for gene content is a rather common one (McPeek
et al. 2004; Gengler et al. 2007) and leads to a very con-
venient linearization of the problem. In particular, REML
algorithms have two nice features for our purposes. The
first is that they use Henderson’s mixed-model equations,
which in this case are of the form
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where W is a matrix that contains 1 if the individual has
a genotype and 0 otherwise, z contains observed genotypes
(0, 1, 2) in a similar manner, u is expanded to include all
individuals in the pedigree (Gengler et al. 2007), and m ¼ 2p.
This corresponds to a linear model z ¼ 1mþWuþ e. This
formulation, including animals with no genotype, allows use
of the whole-pedigree matrix A21 (Henderson 1977), which
is very sparse and can be easily obtained using Henderson’s
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(1976) rules, which are computationally convenient with re-
spect to the equations of McPeek et al. (2004) . From the final
output, an estimate of p is obtained as p̂ ¼ m̂=2. Another esti-
mate that is slightly different because of numerical maximiza-
tion of p (and q = 1 2 p) is obtained as the solutions to the
equation s2

u ¼ 2pq, i.e., 0:56
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 2s2

u

p
=2.

Hypothesis testing of genotyping errors: Another feature of
REML is that it computes likelihoods, from which statistic tests
can be constructed. In our case, there are two hypothesis: the
null hypothesis states that there are no genotyping errors, and
therefore, s2

e ¼ 0 (or h2 ¼ 1). The alternative hypothesis
allows any positive value of the error variance. A likelihood-
ratio test (LRT) can be used to reject the null hypothesis as
follows: under the null hypothesis of zero genotyping error
variance, the LRT statistic is asymptotically distributed as
1/2x2(0) + 1/2x2(1) (Self and Liang 1987; Visscher 2006).
P-values for the observed LRT statistic can be calculated as-
suming this distribution. Although this assumes normality,
LRT is known to be robust to departures from normality
(e.g., Almasy and Blangero 1998).

Implementation: In practice, the method is simple. For each
marker, REML estimates of s2

e and s2
u are obtained together

with the value of the maximum likelihood—this is the alter-
native hypothesis. Another estimate is obtained with s2

e ¼ 0
(in practice, set to a very small value). Later, the P-value of
the LRT is computed from the two likelihoods, and a rejec-
tion threshold is established based on the preceding asymp-
totic distribution and a desired Type I error (in this work,
1%). We also suggest, as a less formal procedure, an inspec-
tion of the estimated heritability; heritabilities lower than 1
are suspicious.

Test in absence of pedigree: If a pedigree is not available
but most markers are a priori correctly genotyped, we sug-
gest the following untested procedure:

1. After QC based on Hardy-Weinberg equilibrium, call
rates, and MAF, construct a genomic relationship matrix
G using all markers, e.g., following VanRaden (2008).

2. Test the heritability of each marker using REML estima-
tors as earlier and matrix G (this procedure is sometimes
called GREML) for the covariance of gene content across
individuals.

3. Discard markers rejected by the test, and iterate the pro-
cedure until no more markers are removed.

This procedure assumes that most markers are correct.

Tests of the Method

Simulations: To ascertain the sensitivity (i.e., fraction of in-
correct markers that are rejected) and the specificity (i.e.,
fraction of correct markers that are not rejected) of the test,
we simulated data using QmSim (Sargolzaei and Schenkel
2009) following Mendelian rules—therefore, the simulated
data had no errors. We considered a simplified pig nucleus

breeding program scenario with 10 autosomal chromosomes
of 160 cM each and 70,000 SNPs. First, a mutation-drift equi-
libriumwas reached in 2500 generations of randommating in
a population with effective population size equal to 500 and
mutation rate 23 1024, followed by a severe bottleneck with
effective population size of 75 evolving during 30 genera-
tions. Then there was selection (not described here) during
5 generations, where 20 boars were mated with 200 sows
producing 2000 offspring, with a total of 10,220 animals,
with complete pedigree and 5000 randomly chosen animals
genotyped for 28,254 markers with MAF . 0.01.

Type I error was evaluated as the number of SNPs with
P-values above the significant level of 0.01 for the heritability
test. We assessed type II error under two genotyping error
scenarios by permuting both 10 and 5% of the genotypes for
each SNP. Permuting the genotypes preserves minor allele
frequencies and the Hardy-Weinberg equilibrium. Permuted
genotypes were random for each SNP. Actually, a permuted
genotype can be replaced by a correct genotype just by ran-
dom, so the number of actual errors is lower than these
values and a function of the allelic frequencies as follows:
in Hardy-Weinberg equilibrium, a heterozygous genotype
has a frequency of 2pq, and it is permuted by another hete-
rozygous genotype with probability x (of being permuted)
times 2pq (the frequency of another heterozygote). Extending
the reasoning to the three possible genotypes, the rate of
error is x½p2ð12 p2Þ þ 2pqð12 2pqÞ þ q2ð12 q2Þ�, a quartic
in the allelic frequency. Thus, the actual error is 0.625x for
a frequency of 0.5, 0.47x across a uniform spectrum of allelic
frequencies, and lower for U-shaped distributions; in our par-
ticular simulation, the actual errors were 0.02 and 0.04 for
the 5 and 10% permutation rates.

Data: We used a pig data set that has been made available
to the scientific community (Cleveland et al. 2012). The data
set consisted of 3534 animals from a single PIC nucleus pig
line with genotypes from the Illumina PorcineSNP60 chip
(Ramos et al. 2009) with very little QC and a pedigree tracing
back two generations from the genotyped animals (N= 6473).
In practice, this data set should undergo Mendelian checking
of parent-offspring couples to eliminate inconsistent animals;
we have preferred not to do so in order to use the data set “as
is.” A total of 50,433 SNPs were used in this study after filter-
ing genotypes for minor allele frequency (,0.01) and the SNP
call rate (,90%) and excluding SNPs on the sexual chromo-
somes. The reason to exclude MAF , 0.01 is that numerical
maximization of REML is unreliable in that case. For com-
parison purposes, the same analysis was carried out in two
extreme scenarios by randomly permuting half or all the
genotypes for each SNP in the data set.

Statistical analysis: For each SNP in the data set, the he-
ritability and the LRT statistic were calculated to test for
zero error variance in genotyping. The maximum residual
log-likelihoods under the full (alternative hypothesis with-
out a priori on the values of s2

u and s2
e ) and reduced models
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(null hypothesis assuming s2
e ¼ 0) were obtained using

remlf90 (Misztal et al. 2002). Heritability of gene content
was estimated for each SNP under the full model. Estimates
can be carried on in parallel if needed. Because this software
uses Henderson’s mixed-model equations, the reduced model
had to be approximated by specifying a very small value for
the residual variance, s2

e ¼ 0:0001. The advantage of com-
puting in this way is that standard REML software can be
used. We also used QC checking based on Mendelian errors
included in preGSf90 (Aguilar et al. 2014); a marker was
rejected if its genotypes showed Mendelian inconsistencies
in more than 1% of the parent-offspring couples or trios.

The complete scripts for QC, the PIC data set, and the
three simulated data sets are available at http://genoweb.
toulouse.inra.fr/~alegarra/qualitycontrol.tar.gz. A version
with the scripts and a small subset of the PIC data set is
available as Supporting Information, File S1.

Results

Simulations

Figure 1B displays estimates of heritability (Figure 1A shows
P-value of the LRT) as a function of minor allele frequency
for the data simulated with no error. Most heritability esti-
mates are very close to 1, even for very low MAF values,
although there is a trend that markers with very low MAF
values have lower heritabilities (e.g., they may become fixed
by drift). Using a threshold at nominal 0.01 type I error, the
sensitivity when 10% (5%) of the simulated genotypes were
erroneous (permuted at random) was 0.99 (0.91). The spec-
ificity was 0.95 (i.e., 5% of correct SNPs were rejected).
Alternatively, we bounded the estimates of heritability for
rejection. Figure 1C shows type I (or 1-specificity) and type
II (1-sensitivity) errors against putative thresholds for rejec-
tion based on heritability. For instance, if markers are
rejected if their heritability estimate is lower than 0.975,
this results in a specificity of 0.96 (4% of correct markers
are rejected) and a sensitivity of 0.99 (for 10% of permuted
data, 1% of all wrong markers are accepted). Choosing a
lower bound such as 0.90 results in only 0.04% of markers
being incorrectly rejected but as much as 6.5% of markers
being incorrectly accepted. These figures change with the level
of quality, and the situation with 5% permutation of genotypes
gives higher type II error. Checking Mendelian errors with
preGSf90 performed worse, with 0 type I error (as expected)
and 0.54 (0.84) sensitivity in the scenario where 5% (10%)
genotypes were permuted. A receiving operator curve detailing
results for no error vs. 10% error is available in Figure S1.

Real Data

Figure 2A shows box plots for the estimated heritability of
the SNPs for the original data set, the half-permuted data
set, and the completely permuted data set. The original data
set had a mean heritability of 0.99, and 75% of the SNPs had
heritabilities above this value, although some of the markers

deviated highly from 1. When half the genotypes for each
SNP were randomly permuted, heritability ranged from 0.02
to 0.84, the mean heritability was 0.25, and 75% of the
estimates were below 0.27. For the fully permuted data
set, all heritabilities were below 0.07. The boxes shift upward
as the overall quality of the data set improves. When testing
the null hypothesis of zero genotyping error at a = 0.01, the
null hypothesis was rejected in 8% (N= 4099) of the SNPs of
the original data set, whereas all the P-values were below
10212 for the half-permuted data set and below 10293 for
the fully permuted data set. The latter exemplifies how a geno-
typing procedure that is largely wrong for a large percentage
of the individuals (.50%) can be easily spotted using our
method. The 4099 markers that did not pass the test in the
original data set should be declared wrongly genotyped, and
their genotypes should not be used in later analyses. Figure 2B
illustrates the relationship between heritability estimates
and P-values of the LRT when REML is used to estimate
variance components of the original data set. It can be seen
that rejected SNPs had the lower estimates of heritability,
although the range of values was large (0.13 , h2 , 0.97
for SNPs with P, 0.01). For example, a marker with a (very)
low MAF can result in high estimates of heritability, but the
LRT may be inconclusive because there is very little informa-
tion in the data. In general, however, using either a formal
LRT or estimates of heritability will produce similar results.
Using heritability estimates is less formal statistically, but it is
easy to interpret for quantitative geneticists, and it can lead to
an easy speed-up of the method, as discussed later. In this
data set, preGSf90 checking of Mendelian errors detected
only one wrong marker at 1% tolerance for Mendelian incon-
sistencies, 577 at 0.1% tolerance, and 2019 at zero tolerance.
Among the 577 markers with .0.1% conflicts, 388 were in
common with the 4099 rejected by the heritability test. The
577 markers with .0.1% Mendelian inconsistencies had
lower heritability estimates (0.92 on average) than those that
were not rejected (0.99).

Discussion

Our original method was successful in identifying low-quality
markers in a complex pedigree. The method avoids finding
pedigree structures such as father-son pairs or trios. Although
the analysis of each individual marker takes a few minutes, it
can be parallelized because each marker is independent. Our
method provides a statistical test, and therefore, its properties
are known, whereas for other procedures, cutoff thresholds
are largely arbitrary. As shown by our results, other tests, such
as the parent-offspring pairs, have high specificity but not
necessarily high sensitivity, e.g., if not many parent-offspring
pairs exist. In addition, our method takes into account segre-
gation distortions. The method seems to be robust to the pres-
ence of a low allele frequency (say, .0.05). However, for very
low allelic frequency, estimates of heritability and LRT tend to
be unreliable (Figure 1, A and B), although we have not tested
the method for values lower than 0.01. Our procedure cannot
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correct Mendelian errors for markers that are not rejected,
and in this case, the use of parent-offspring comparisons is
necessary.

The method assumes a single population in Hardy-Weinberg
equilibrium. The latter hypothesis seems not very restrictive
because the simulated data included selection. If the population
has different origins, still, s2

e ¼ 0. However, the hypothesis of
common means and variances will not hold. An approximate
method consists of fitting different origins using an unknown
parent groups model (Quaas 1988), i.e., allowing for different

allelic frequencies at different base populations. This assumes
the same value of s2

u ¼ 2pq across all populations, which will
be true if the frequencies are similar across populations but will
be false if there is a large divergence.

While REML estimation of heritability for a single SNP is
likely to be fast, the total number of computations for a large
number of SNPs can take days. In expectation-maximization
REML (EM-REML), the most expensive operations in one round
of iteration include (1) setting the mixed-model equations, (2)
calculating solutions, and (3) calculating traces. However, the

Figure 1 Results from simulated data. Minus logarithm of the P-value of the null hypothesis (A) and estimates of heritability of gene content of the
marker (B) vs. its minor allele frequency for the simulated data with no error. The horizontal line in A is the 1% rejection threshold. (C) Type I (continuous
line) and type II errors as a function of the rejection threshold based on heritability of gene content of the marker for the simulated data with no error
(continuous line) or with 5% (circles) and 10% (crosses) permuted genotypes.
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mixed-model equations are the same for a value of heritability
in all markers. Thus, dramatic costs savings can be realized
when factorizations and traces are precomputed for several
values of heritability. If the purpose of QC is to select SNPs with,
say, h2 . 0.98, only three sets of such matrices would be re-
quired, e.g., at h2 = 0.99, 0.98, and 0.97.

Our procedure cannot identify pedigree errors (i.e., mis-
labeling of DNA samples). In this case, errors are across
markers in one individual instead of being across individuals
for one marker. Parent-offspring discordances can flag such
an error if many markers do not follow Mendelian rules for
a given parent-offspring pair. There are procedures to assign
parents (Wiggans et al. 2009; Hayes 2011; VanRaden et al.
2013). However, a general procedure to identify and correct
pedigree errors does not exist yet. A practical procedure is to
compare genomic relationships (VanRaden 2008) and pedigree
relationships and inspect the differences, which depend on the
relationship itself and the genome architecture. A thorough de-
scription of such differences can be found inWang et al. (2014).

A particular case is the use of genotypes from different chips
or panels, possibly with different chemistry, e.g., the 50K and
3K panels in cattle (Wiggans et al., 2012). These authors found
that some markers were correctly read using one panel but not
the other. In our method, this would be observed because
heritability estimated including genotypes from the faulty chip,
either alone or combined with the other panel, would decrease.
This also applies to samples genotyped in batches; e.g., if there
is a (large) batch of individual samples with poor DNA condi-
tions, the addition of genotypes from the sample will decrease
heritability estimates.

In our experience, this procedure is most useful when
dealing with new complete data sets, in particular, from
experimental studies. Regular genetic evaluations, as in dairy
cattle, keep a better track of DNA samples, and because of the
abundance of parent-offspring couples and trios, poor-quality
markers are easily found (Wiggans et al. 2009, 2012).

Conclusion

We have introduced a practical QC procedure to identify
SNPs with low quality across many individuals. The proposed
filter is in essence an estimate of heritability of gene content
at the SNPs, where any deviation from 1 is suspicious, and the
P-value is for testing the null hypothesis of “no error in geno-
typing.” This QC procedure can jointly consider all geno-
typed individuals and their pedigree and uses standard
hypothesis-testing procedures. It should be used as a comple-
ment to standard QC procedures and possibly after them.
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Figure S1   ROC curve for detection of genotyping errors. This particular ROC curve uses heritability as the rejection criteria 

and combines results of “good” markers (simulation with no errors) and “bad” markers (simulation with 10% error). 

Created with R package “Epi”. 
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File S1 

Scripts for quality control 

File qualitycontrol_reduced.tar.gz containing scripts and a small example is available for download at 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.173559/‐/DC1. 


