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ABSTRACT Recent use of genomic (marker-based) relationships shows that relationships exist within and across base population (breeds
or lines). However, current treatment of pedigree relationships is unable to consider relationships within or across base populations,
although such relationships must exist due to finite size of the ancestral population and connections between populations. This
complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent
theoretical framework to consider base population in pedigree relationships. We suggest a conceptual framework that considers each
ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view
which each population is considered as an infinite, unrelated pool. Several ancestral populations may be connected and therefore related.
Each ancestral population can be represented as a “metafounder,” a pseudo-individual included as founder of the pedigree and similar to
an “unknown parent group.”Metafounders have self- and across relationships according to a set of parameters, which measure ancestral
relationships, i.e., homozygozities within populations and relationships across populations. These parameters can be estimated from
existing pedigree and marker genotypes using maximum likelihood or a method based on summary statistics, for arbitrarily complex
pedigrees. Equivalences of genetic variance and variance components between the classical and this new parameterization are shown.
Segregation variance on crosses of populations is modeled. Efficient algorithms for computation of relationship matrices, their inverses,
and inbreeding coefficients are presented. Use of metafounders leads to compatibility of genomic and pedigree relationship matrices and
to simple computing algorithms. Examples and code are given.
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POWELL et al. (2010) pointed out the conceptual conflict
between identity-by-descent (IBD) relationships based

on pedigree and identity-by-state (IBS) relationships based
on marker genotypes. These are also known as pedigree and
genomic (VanRaden 2008) relationships, respectively, and
we use this terminology hereinafter. Whereas reference for
pedigree relationships is formed by founders of the pedi-
gree, reference for the genomic relationships is most often
the current genotyped population (e.g., Powell et al. 2010;

Vitezica et al. 2011). Powell et al. (2010) showed that one
can (at least conceptually) refer genomic relationship coef-
ficients to the pedigree scale and vice versa. In the context of
applied genetic evaluation of livestock, similar notions were
introduced by VanRaden (2008) and Vitezica et al. (2011),
explicitly modifying genomic relationships to refer to pedi-
gree coefficients. However, an implicit assumption in these
proposals is that the genotyped population has no pedigree
structure, e.g., no sib groups and only one generation (Christensen
2012), and the proposals are also difficult to extend to several
base populations (Harris and Johnson 2010; Misztal et al.
2013; Makgahlela et al. 2014).

In addition, pedigree relationships have several problems.
Pedigrees, which are incomplete by definition, end up in one
or several base populations (lines or breeds). For instance, the
pedigree of the Romane sheep synthetic breed traces back to
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two base populations, the Romanov and Berrichon du Cher
breeds, and the pedigree of global Holstein cattle population
can often be traced back to “European” and “North American”
base populations. In another more complex case, pedigrees
are incomplete for some categories of animals. For instance,
in dairy sheep, the father of all males is known, but only
5–80% of females have a known father. To further complicate
things, in the presence of selection, assuming that all un-
known parents belong to the same base population and have
the same genetic level is unfair since younger (or sometimes
foreign) animals are selected and therefore “better” than the
base population. If not properly accounted for, this structure
in several base populations results in biases (e.g., Ugarte et al.
1996; Misztal et al. 2013). Therefore, unknown fathers are
assigned to different base populations, e.g., depending on
year of birth, country of origin, sex, or path of selection.
Current practice of genetic evaluations assumes that individ-
uals in the different base populations (typically known as
genetic groups or unknown parent groups) have different
a priori average values, and these values are estimated as
fixed effects within the model (Thompson 1979; Quaas
1988). However, the quantitative genetics theory of unknown
parent groups has not been much further developed. For in-
stance, Kennedy (1991) pointed out that genetic groups are
incorrectly assumed to be unrelated to each other and that
reduction of variance due to drift and selection should be
accounted for. With molecular markers, there are more and
more examples of observed relationships across base popula-
tions that were a priori unrelated (Kijaas et al. 2009 ; Gibbs
et al. 2009; Ter Braak et al. 2010 ; VanRaden et al. 2011).

The hypothesis of unrelatedness of founders in a base
population implies that the base population is drawn from
a very large ancestral population. Not only is this false but it
also contradicts marker-based information (animals seem-
ingly unrelated share alleles at markers). Although unrelat-
edness can simply be seen as an arbitrary starting point, we
suggest that relaxing this hypothesis gives more flexibility to
the models.

On the other hand, genomic measures of relationships are
not dependent on knowledge of pedigree. Further, they are
more accurate because they consider realized, not expected,
relationships (VanRaden 2008; Hayes, et al. 2009; Hill and
Weir 2011). Genomic relationships can be projected along
the pedigree for animals with no genotypes (Legarra et al.
2009; Christensen and Lund 2010). The so-called single-step
GBLUP (SSGBLUP) thus mixes pedigree and genomic rela-
tionships, and is becoming the de facto standard in genomic
evaluations for livestock (e.g., Legarra et al. 2014b). However,
SSGBLUP requires genomic and pedigree relationship to refer
to the same base. This base is however, hard to define.
Genomic relationships of the current population change
as more individuals are being included and are poorly de-
fined if populations are structured (i.e., in lines, breeds or
origins) (e.g., Harris and Johnson 2010). Defining a base is
also difficult for pedigree relationships as pedigrees are in-
complete and possibly end up in several base populations. An

alternative is truncation of the pedigree, to have a more ho-
mogeneous base population (e.g., Lourenco et al. 2014), but
this is not always a feasible option. Furthermore, defining
pedigree founders as unrelated is contradictory with results
obtained if these individuals are genotyped. Christensen
(2012) suggested taking for genomic relationships an arbi-
trary reference and an ideal population with 0.5 allele fre-
quency at the markers, and referring pedigree relationships to
this base population. By doing so, he showed that founders of
the base population should become related, and this extra
relatedness can be understood as an excess of identical-by-
descent homozygosity. The approach can be understood as a
marginalization with respect to uncertainty in allelic fre-
quencies, and a stable definition of the genetic base across
time and different populations is obtained. Extension of
this method to several founder populations is, alas, not
straightforward.

In this work, we present a theory to consider relation-
ships within and across base, or founder, populations. This
theory provides the tools, on the one hand, to generalize the
“unknown parent groups” used in genetic evaluations and,
on the other hand, to generalize Christensen’s results, which
conciliate pedigree and genomic relationships. The concepts
developed in this work aim to be rather general and are
based on pedigree considerations, but their use is of large
interest in two cases: first, when combining genomic and
pedigree relationships across individuals (as the SSGBLUP
mentioned above) and, second, when considering several
base populations simultaneously.

The outline of this article is as follows. First, we show that
base populations with related individuals can be understood
as issued from finite size ancestral populations. This, although
not strictly necessary for practical purposes, gives a conceptual
model and a genetic interpretation (Jacquard 1974). Second,
such an ancestral population can be represented as a single
pseudo-individual (a metafounder) with a particular self-
relationship (a measure of homozygosity) and represents a
pool of gametes. Several base populations can be represented
as several, possibly related, metafounders. Metafounders are
convenient because they simplify the representation and the
algorithms for computing relationships and inbreeding.
Finally, we show how parameters (ancestral homozygosities
and relationships across populations) of ancestral populations
can be estimated from the combined use of marker and ped-
igree data. Our work is an extension and unification of exist-
ing works by Jacquard (1969, 1974), VanRaden (1992),
Aguilar and Misztal (2008), VanRaden et al. (2011), Colleau
and Sargolzaei (2011), and Christensen (2012).

Theory

Relationships in a finite population

Relationships across base individuals: Let “ancestral” be the
population from which founders of the pedigree are drawn
and “base” population be the set of these pedigree founders
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(Figure 1). Typically, individuals in the base population are
assumed to be drawn from a large, unrelated, ancestral pop-
ulation mating at random, so that the base population
individuals will not be related. Jacquard (1969, 1974) con-
sidered relationships in a finite-size population, showing
that inbreeding and relationships increase steadily. We re-
develop his treatment in a simplified form. Pedigree found-
ers in the base population are drawn at random, with
replacement, from an ancestral finite monoecious popula-
tion with effective size Ne, 2Ne gametes, “true” average
breeding value m, and genetic variance s2

u. In this ancestral
population gametes are assumed to be independent (in
a sense, the ancestral population becomes the new base).
Imagine two gametes sampled with replacement from the
finite ancestral population to form the base population. The
second gamete will be identical to the first gamete 1=ð2NeÞ
of the times. Therefore, the relationship coefficient (proba-
bility of identity by descent) between all pairs of gametes is
g=2 ¼ 1=2Ne, and this relationship g=2 can be understood
as the correlation between gametes of Wright (1922). Jacquard
(1974) used a ¼ g=2 and called it the “inbreeding coefficient
of a population.”

Across-individual relationships in the base population are
depicted in Figure 2. Consider diploid individuals X and Y.
They are constituted by four gametes, a,b,c,d. These game-
tes have been drawn from a pool of gametes where the
probability of being identical (by descent) is g=2 across
gametes and 1 with itself (Figure 2, left). Therefore, the
coancestry coefficient between X and Y is the four-way av-
erage of probabilities of being identical for each possible pair
of gametes, which sums to g=2. Additive relationship be-
tween X and Y is twice the coancestry and therefore g (Fig-
ure 2, right). Now consider individual X. The self-coancestry
considers four ways of sampling alleles a and b (with re-
placement), and because Pða[ bÞ ¼ g=2, self-coancestry is
equal to 1=2þ g=4, and therefore self-relationship is equal
to 1þ g=2.

The base population has associated breeding values u0.
From the developments above, the variance-covariance matrix
of breeding values is Varðu0Þ ¼ ½Ið12 g=2Þ þ Jg&s2

u; where I
is the identity matrix and J is a matrix of ones. This covariance
structure was suggested by Christensen (2012) to correctly

compare genomic relationships and pedigree relationships.
Due to random sampling of a limited number of founders,
the mean of the base population composed of n individuals
(u0 ¼ 19u0=n) will drift around the mean of the ancestral
population with variance Varðu0Þ ¼ g þ ð12g=2Þ=n:

Pedigree relationships from related base populations:
VanRaden (1992) (unaware of the work of Jacquard 1974)
assigned nonzero relatedness to animals in the base popula-
tions to correctly estimate inbreeding when pedigree infor-
mation is missing. The value assigned to this relatedness,
which is equivalent to g, was set to the average relatedness
of contemporary individuals with known relationships.
Lutaaya et al. (1999) showed that the classical algorithm for
calculating inbreeding is very sensitive to even a small loss of
pedigree while VanRaden (1992) algorithm is much better
although not perfect. This idea was also applied by Aguilar
and Misztal (2008), and Colleau and Sargolzaei (2011) used
a closely related idea in a similar setting.

Obtaining pedigree relationships from related base pop-
ulations is conceptually straightforward, can be done follow-
ing the tabular rules (Emik and Terrill 1949), and leads to
a matrix of additive relationships

Ag ¼ A
!
12

g

2

"
þ gJ;

where A is the matrix with regular relationships and J a
matrix of 1’s. In Jacquard (1974, p. 169), this formula is
presented using coancestries instead of relationships. How-
ever, algorithms for computation of inbreeding (e.g., Quaas
1976; Meuwissen and Luo 1992), Henderson’s (1976)
sparse inverse of the pedigree relationships, and other
algorithms (Colleau 2002) need to be modified to account
for nonzero relatedness of founders (e.g., Aguilar and Misztal
2008; Christensen 2012). These changes are rather complex
and do not generalize well to the case of several base pop-
ulations that are presented later. For this reason, and
for its conceptual appeal, we have conceived the use of
metafounders.

Figure 1 Ancestral and base population and pedigree.
Figure 2 Relationships (red dashed line), in a related base population, of
two individuals X and Y seen as gametes (left) or individuals (right). In-
dividual X (Y) contains gametes a and b (c and d). Relationships across
and within gametes are respectively g=2 and 1; relationships across and
within individuals are g and 1þ g=2.
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Metafounder

We now introduce a different, but equivalent, representation
of related base populations that allows a greater flexibility.
This representation uses so-called metafounders.

Definition: The notion of metafounder comes as an exten-
sion of VanRaden (1992) method for estimation of across-
breed relationships. Imagine a pseudo-individual who can
be considered as, simultaneously, father and mother of all
base animals (Figure 3). We call this pseudo-individual
a metafounder. The metafounder in Figure 3 represents
the ancestral population in Figure 1.

In Figure 3, the metafounder (individual 1) represents a
finite-size pool of gametes, from which the gametes consti-
tuting individuals 2–6 (the base population) are drawn.
Picking two gametes at random with replacement, these
gametes have an across-gamete relationship of g=2. Therefore,
the metafounder can be considered as having a self-relationship
of a11 ¼ g and an individual inbreeding coefficient of
Fi ¼ a11 2 1 ¼ g21, which will usually be negative. In-
breeding means departure from Hardy–Weinberg equilib-
rium, and negative inbreeding represents excess of
heterozygotes. Therefore, negative inbreeding means that
in most cases two gametes are different, i.e., the size of
the pool is large, which is a tenable genetic hypothesis.
For instance, considering g ¼ 0 (and therefore F ¼ 21)
means that the two gametes are always different (by de-
scent) and unrelated, i.e., the size of the pool is infinite,
heterozygosity (by descent) is complete, and all individuals
in the base population are unrelated. Considering g ¼ 2
(and F ¼ 1) means that two gametes drawn at random are
always identical, i.e., the pool consists of one gamete, there
is complete homozygosity, and all individuals in the base
population are identical and completely inbred.

Algorithms for relationships and inbreeding with a single
metafounder: With this representation using metafounders,
regular rules for computation of relationships and inbreed-
ing change only slightly. Consider the Emik and Terrill
(1949) rules for computation of additive relationship

coefficients. They start by assigning self-relationships of 1 to
all animals in the base population and later two rules are
used,

aij ¼ 0:5ðadj þ asjÞ

aii ¼ 1þ 0:5ðasdÞ;

where d and s are the dam and sire of i, which must be
younger than j. To include the metafounder, the only change
is to set its self-relationship (a11 in the example) to g. The
Emik and Terrill rules do not otherwise need to be changed.
For instance, for individual 2 in Figure 3, a22 ¼ 1þ 0:5a11 ¼
1þ g=2, and for individuals 1 and 2, a12 ¼ 0:5ða11 þ a11Þ ¼
g. For individuals 2 and 3, a23 ¼ 0:5ða12 þ a12Þ ¼ g. There-
fore, assigning a metafounder with self-relationship g is
strictly equivalent to considering across-founder population
relationships g and founder self-relationships 1þ g=2. The
recursive algorithms of Karigl (1981) and Aguilar and Misztal
(2008) are versions of Emik and Terrill (1949) and therefore
need no modification beyond setting a11 to g. Using these
rules, Ag is easily created.

Consider Henderson’s (1976) inverse of the relationship
matrix A. This consists in a product on the form A21 ¼
L21D21L219, where D is usually a diagonal matrix contain-
ing variances of the Mendelian sampling terms (deviation of
an individual’s breeding value from its parents’ average) and
L21 contains ones in the diagonal and 0.5 coefficients link-
ing parents to offspring. Elements of D are a function of
inbreeding of the parents (see Thompson 1977 for the proof
and Elzo (2008) for a detailed explanation). This reasoning
applies equally well to the use of one metafounder. Thus,
using pedigrees with a metafounder, all the information
about covariance of gametes transmitted from base animals
to their descendants is contained in the inbreeding of the
base animals, and the algorithm of Henderson (1976) works
without changes, provided (and this is important) that in-
breeding for all individuals is computed previously. This is
opposite to Christensen (2012), who had to devise modifi-
cations of the algorithm.

Inbreeding coefficients can be computed by Emik and Terrill
(1949) or, equivalently, using recursion (Karigl 1981; Aguilar
and Misztal 2008). However, efficient algorithms for compu-
tation of inbreeding use Henderson’s (1976) decomposition
of the numerator relationship matrix. These algorithms (e.g.,
Quaas 1976; Meuwissen and Luo 1992) proceed by computing
the variance of the Mendelian sampling term, Dii. Meuwissen
and Luo (1992) presented one rule,

Dii ¼ 0:52 0:25ðFs þ FdÞ;

where, in the case of unknown ancestor, s ¼ 0 (or d ¼ 0),
their programming set F0 ¼ 21. The same rule for compu-
tation of Dii applies to the pedigree with one metafounder in
Figure 3, by setting F1 ¼ g2 1. In fact, the Meuwissen and
Luo (1992) algorithm can be understood as having one

Figure 3 Base population with a metafounder and corresponding pedi-
gree.
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metafounder with g ¼ 0. Finally, the algorithm of Colleau
(2002) for fast multiplication of matrix A with vector x, Ax,
or extraction of elements of A also works.

Multiple base populations

Across-population relationships: An important case is the
analysis of several populations at the same time, possibly
with crosses. The conceptual model can easily be extended
to several base populations, possibly with overlap as re-
presented in Figure 4. In this case, we need to define within-
and across-population relationships

G ¼

0

@
gA gA;B

symm gB

. . .

1

A:

This was suggested by VanRaden (1992) and used by VanRaden
et al. (2011). The interpretation of the across-base population
coefficients like gA;B is that the ancestor populations overlap, as
seen in Figure 4. If population A is composed of nA gametes,
population B of nB gametes, and they overlap to an extent of nAB
gametes (for instance, in Figure 4 these are 6, 6, and 2, respec-
tively), then gA ¼ 1=nA, gB ¼ 1=nB; and gA;B ¼ nAB=nAnB. The
last result can be explained as follows: gA;B is the probability
that the gamete from A comes from the overlap (nAB=nA),
times the probability that the gamete from B comes from the
overlap (nAB=nB), times the probability that both gametes are
actually the same, given that they come from the overlap
(1=nAB). We allow values of gA, gB; and gA;B in a continuous
range, even though the formulas only support values corre-
sponding to integer values of nA, nB and nAB. We also allow
gA;B to potentially be negative, in order to consider the situa-
tion where populations have diverged due to selection in op-
posite directions. However, there is the restriction that the
matrix G should be positive definite.

Metafounders: The consideration of each ancestral popula-
tion as a metafounder is straightforward. Metafounders
would be related by relationships

G ¼

0

@
gA gA;B

gB

. . .

1

A

(Figure 5). Actual numbers for the relationships within and
across metafounders in G either can come from knowledge
of the history of the populations (i.e., they diverged so many
generations ago) or can be inferred from genomic relation-
ships; this is detailed later.

Algorithms for relationships and inbreeding with several
metafounders: A pedigree with several metafounders
defines a relationship matrix AG. Algorithms for creation of
this matrix are extensions of previous ones. To form AGusing
the tabular rules (Emik and Terrill 1949), the first step is to set
G as relationships of the metafounders and then apply the
regular rules. Rules for the inverse AG21 consist in, first, invert-
ing G to create a small submatrix of AG21 and then using
Henderson’s rules (1976) with the elements Dii for all individ-
uals modified according to self-relationships of metafounders,
as in the previous section. Using generalized inverses for in-
version of G results in an algorithm that, for G ¼ 0, gives the
same AG21 as with unknown parent groups as in Thompson
(1979) or Quaas (1988). The reason for this is that the gen-
eralized inverse of G ¼ 0 is 0, and otherwise the rules for
inversion and the values of Dii are identical. This shows that
metafounders are a generalization of unknown parent groups.

Computing Dii involves computation of inbreeding coeffi-
cients, which can be done by recursion or modifying Meuwis-
sen and Luo (1992). The Meuwissen and Luo (1992)
algorithm goes up the ancestors of a given animal i and adds
contributions LijDjj to the inbreeding coefficient of i; then
animal j is deleted from the list of ancestors, and Lij is set
to zero. However, this does not work in the particular case of
a crossbred individual issued directly from two related meta-
founders, i.e., an F1 crossbred individual with unknown
parents. This is a case that does sometimes exist, e.g., in sheep
and cattle. In this case, the contribution from the metafound-
ers to Aii is a sum over all metafounders

P
k¼1;nmfðLi;kK:;kÞ2,

where K:;k is the kth column of K, the lower triangular Cholesky
decomposition of G ¼ KK9, and nmf is the number of meta-
founders. Therefore, in the case of several metafounders, their
contributions need to be processed for simultaneously. The core
modification for the Meuwissen and Luo code is

Figure 4 Several related base populations.
Figure 5 Population with two related metafounders 1 and 2, self-
relationship coefficients g1; g2; and relationship coefficient g1;2 and
associated pedigree.
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K ¼ lower choleskiðgammaÞ

for ði in metafoundersÞf FðiÞ ¼ 1' gammaðiÞg

for ði in ðmetafoundersþ 1; all animalsÞÞf

for ð j in ancestorsðiÞÞf

. . .

if ð j not in metafoundersÞ then

Add LijDjj to Aii

Lij ¼ 0

endif

g

Add
X​ !#

Li;1:nmfK
$2"to Aii

Li;1:nmf ¼ 0

g

Finally, the algorithm of Colleau (2002) to efficiently
compute products AGx as LDL9x multiplies the result of
L9x by D, which has an upper diagonal block equal to G
but that is diagonal otherwise. A complete code is furnished
in Supporting Information, File S2.

Genetic variance considering related base populations

Single base population: The additive genetic variance is the
variance of the breeding values of the set of individuals
constituting a population. This definition does not involve a
notion of (un)relatedness in itself. However, in the base
population, these individuals are typically assumed unrelated,
which simplifies the reasoning. A question is how to relate the
genetic variance of a population modeled as “related” to the
genetic variance of a population modeled as “unrelated.” The
breeding value is defined as relative to the average of the
population. For this reason, any statistical model relating phe-
notypes to breeding values is forced to include an overall
mean or an environmental effect confounded with it. A typical
model for the phenotype can be written as

y ¼ 1mþ uþ e:

We follow the argument of Strandén and Christensen
(2011), but for the sake of discussion, consider the mean
as a random variable with variance s2

m. The covariance
of y is, for the classical model with unrelated base ani-
mals, VarðyÞ ¼ Js2

m þ As2
u2unrelated þ R; where VarðeÞ ¼ R.

As for the new model with related base animals

VarðyÞ ¼ Js2
m* þ Jgs2

u2related þ Að12 g=2Þs2
u2related þ R: Two

equivalent models (with equivalent likelihoods under
multivariate normality) should have the same covariance
for y and therefore

s2
u2related ¼

s2
u2unrelated
12 g=2

and s2
m ¼ s2

m* þ gs2
u2related. In other words, the general

across-individual covariance g is absorbed by the overall
mean (and it will be the case even if the mean is considered
as a “fixed” effect; Strandén and Christensen 2011). An in-
tuitive explanation is that, when sampling a finite number of
animals from a population, animals will tend to be related
and therefore the mean will drift from zero; but this drift of
the mean will be accounted for by the general mean of the
model. The expression above agrees with the numerical
results in Christensen (2012).

This result looks puzzling because it suggests that an “in-
bred” population has higher genetic variance than a non-inbred
one, but this is not actually the case. The parameter s2

u2related
has to be interpreted as a parameter of the statistical linear
model used for the analysis, and it cannot be interpreted as
a genetic variance within the population (whereas s2

u2unrelated
can be). In fact, the s2

u2related would be genetic variance in their
hypothetical unrelated ancestral monoecious parents, and it
would be reduced to s2

u2unrelated assuming a rate of inbreeding
g=2 from parents to offspring, as relatedness g decreases the
genetic variance within a population. Thus, the genetic vari-
ance within the population is always s2

u2unrelated, and the var-
iance component associated to the linear model is s2

u2related.
Along the same line, genetic gain in the “related” base popu-
lation is not proportional to s2

u2related (because when selecting
individuals, they will be related) but to s2

u2unrelated.

Multiple base populations: The reasoning extends to the
case with several populations but no crosses. For simplicity,
we consider only two purebred populations. For breeds
b ¼ A;B the model for phenotypes is

yb ¼ 1mb þ ub;

where the variance–covariance matrix of the combined vec-
tor of breeding values is

var
%
uA

uB

&
¼ s2

AA;A

 

12
gA

2

!

0

0 AB;B

 

12
gB

2

!

0

BBBBB@

1

CCCCCA

þ s2
%

gAJAA gA;BJAB
gA;BJBA gBJBB

&
;

with Ab;b being the relationship matrix of breed b ¼ A;B
and JAA; JAB; JBA; JBB being matrices consisting of 1’s.
Therefore, the vector of breeding values can be expressed as
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%
uA

uB

&
¼

uAu
!
12g A

2

"0:5

uBu
!
12gB

2

"0:5

0

BB@

1

CCAþ
%
bA1n1

bB1n2

&
;

where subindex u on breeding values denotes that they are
in the model with unrelated base populations, and

%
bA
bB

&
( N

 %
0
0

&
;s2

%
gA gA;B

gA;B gB

&!

and assumed independence of breeding values uA
u and uB

u.
By an argument similar to above (i.e., Stranden and Christensen
2011), the parameters bA and bB are absorbed into the two
general mean parameters mA and mB, respectively. Therefore,
the twomodels are equivalent in the sense that genetic variance
parameters are just scaled by ð12 gb=2Þ and breeding values
are just scaled and shifted. This model implies that phenotypes
are separate by population and a mean (or distinct levels of
fixed effects, e.g., herds) has to be fit by population. The argu-
ment above is not difficult to generalize to any number of
populations, as far as crosses that do not exist.

Multiple base populations with crossing: For crossbred
populations the equivalence above does not hold because
gAB enters into the covariances across individuals. A differ-
ent approximate equivalence of variances can be con-
structed as follows. Assume a set of n base population
individuals (n is assumed large) drawn from each of m pop-
ulations. Let the genetic values of the across-breed base

populations be u0 ¼
%
uA0
uB0

&
. The variance–covariance matrix is

Varðu0Þ ¼

1þ gA

2
gA ⋯ gAB gAB ⋯

gA 1þ gA

2
⋯ gAB gAB ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

gAB gAB ⋯ 1þ gB

2
gB ⋯

gAB gAB ⋯ gB 1þ gB

2
⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0

BBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCA

s2
related:

The sample variance of u0, across all populations, is

S2u ¼ u09u0
nm

2u02;

which, for Varðu0Þ ¼ Ks2
u (s2

u is a parameter), has expecta-
tion (Searle 1982, p. 355)

E
#
S2u
$
¼ diagðKÞ2K

! "
s2
u:

In the classical parameterization (unrelated founders) K ¼ I
and thus

E
#
S2u
$
¼ diagðKÞ2K

! "
s2
u ¼

%
12

1
nm

&
s2
unrelated;

which is equal to s2
unrelated if the population is reasonably

large (a popular assumption) and therefore s2
u ¼ s2

unrelated
if founders are unrelated. This means that when the found-
ers are unrelated, the genetic variance is, on expectation,
equal to the variance component of the covariance structure.

Consider now the structure above for Varðu0Þ. The two
terms are equal to

diagðKÞ ¼ 1þ diagðGÞ
2

K ¼
n2m2Gþ nm2nm diagðGÞ=2

! "! "

ðnmÞ2

¼ Gþ 12diagðGÞ=2
nm

E S2u
# $

¼ diagðKÞ2K
! "

s2
u

¼ 1þ diagðGÞ
2

2G2
12diagðGÞ=2

nm

 !

s2
related

in which we neglect the last term. This means that the
genetic variance is, on expectation, equal to the variance
component s2

related times a constant ð1þ diagðGÞ=22GÞ;
which is ,1. Equating these two expressions for EðS2uÞ gives

s2
related )

s2
unrelated

1þ diagðGÞ
'
22G

! ":

This expression gives the previous result s2
related ¼ s2

unrelated=
ð12 g=2Þ for a single population. Compared to the result in
the previous subsection about multiple populations, this ap-
proximate equivalence is quite different. The result in the
previous subsection is an equivalence between one genetic
variance in a model with related base individuals and breed-
specific genetic variances in a model with unrelated base
individuals, whereas the result here is an approximate
equivalence between two genetic variances, one being in
a related base population and another being in an unrelated
base population. This last expression s2

related ) s2
unrelated

'
(#
1þ diagðGÞ=22G

$)
is more general because it can con-

sider correctly crosses across individuals. The difference comes
also because in the previous expression there were separate
means for each population, something that is not required here.

Segregation variance: When crossing pure breeds, there is
an increase of genetic variance due to the increase of
heterozygosity of the QTL; for instance, if alternative alleles
are fixed at each line. The additional variance in the F2 cross
compared to the variance in the F1 cross is termed segregation
variance (Lande 1981; Lo et al. 1993). This is typically
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ignored in a classical framework, although methods exist
(Lo et al. 1993; Garcia-Cortes and Toro 2006). This increase
in the genetic variance can be considered using related
metafounders, as we show here. Two individuals in an F1
population (assuming—in a pedigree sense—unrelated and
non-inbred parents, and factorizing out s2

related) have

VarðuAB Þ ¼
1þ gAB

2
gA

4
þ gB

4
þ gAB

2

gA

4
þ gB

4
þ gAB

2
1þ gAB

2

0

BBB@

1

CCCA

whereas two individuals in an F2 population (parents in F1
above) have

VarðuAB3AB Þ ¼
1þ gm

4
þ gAB

4
gm

2
þ gAB

2

gm

2
þ gAB

2
1þ gm

4
þ gAB

4

0

BBB@

1

CCCA

¼
1þ g F2

2
g F2

g F2 1þ g F2

2

0

BBB@

1

CCCA;

with gm ¼ ðgA þ gBÞ=2 and gF2 ¼ ðgA þ gBÞ=4þ gAB=2. The
gF2 is transmitted forward and does not change in the F3, F4,
etc. The genetic variance of such a population is thus 12 gF2=
2 ¼ 12 ½ðgA þ gBÞ=42 gAB=2&=2: The variance–covariance
matrix of two individuals in the F2 can be expressed as

VarðuAB3AB Þ ¼ VarðuAB Þ

þ
%
ðgm2 gABÞ

'
4 0

0 ðgm 2 gABÞ
'
4

&

showing that the segregation variance is ðgm 2 gABÞ=4. Be-
cause G is positive definite, then this term must be$0. Slatkin
and Lande (1994) showed that segregation variance is a func-
tion of within-loci squared differences of means at the two
breeds, plus cross-products of differences across loci weighted
by linkage. If gAB is estimated using markers as above, then it is
implicitly assumed that genotypes at loci for the trait of interest
have the same distribution across breeds and within the ge-
nome as marker genotypes. Reports of segregation variances in
the livestock genetics literature are scarce (e.g., Cardoso and
Tempelman 2004; Munilla-Leguizamon and Cantet 2011),
partly because of poor data sets, partly because of computa-
tional difficulties, and partly because the bulk of crossbred
animals is in poultry and swine, where crosses do not go be-
yond F1 populations. So it is uncertain whether accounting for
segregation variance is of any practical relevance.

Estimation of metafounders ancestral relationships
from genomic data

Because the within- and across-founder relationships
cannot be inferred from pedigree, we suggest estimating

these relationships using molecular markers, referring them
to a genetic base defined according to genomic relationships
(Christensen 2012). The objective of this section is to obtain
estimators of G based on two kinds of statistical inference:
a method of maximum likelihood and a method of moments
(roughly, make first- and second-order statistics of genomic
and pedigree relationships comparable).

Maximum likelihood: Genomic information sheds light on
relationships across breeds (Gibbs et al. 2009; Kijaas et al.
2009; VanRaden et al. 2011; Legarra et al. 2014a). Genomic
relationships (VanRaden 2008; Hayes et al. 2009) are esti-
mators of relatedness based on the observation of thousands
of molecular markers, and typically matrix G ¼ ZZ9=s is
used, where Z contains centered genotypes and s is a mea-
sure of global heterozygosity, for instance, s ¼ 2

P ​ piqi, the
total heterozygosity at the markers. This information can in
principle be used to infer the G coefficients as follows.
Marker genotypes follow Mendelian transmission, and
therefore the covariance of genotypes of two individuals is
determined by their relationship. Christensen (2012) used
this to estimate g in a single population. First, he integrated
the likelihood over the unknown allelic frequencies, which
results in using allelic frequencies of 0.5 as a reference (Z
coded as f21; 0; 1g). Assuming multivariate normality for Z,
the markers’ genotype, the likelihood of observed genotypes
conditional to g and s is

log pðZjg; sÞ ¼ const2
pn2
2

logðsÞ2 p
2
log

#**Ag
22

**$

2
p
2s

tr
!
Ag21
22 ZZ9

"
;

where n2 is the number of genotyped individuals and Ag
22 is

the submatrix of Ag corresponding to the genotyped individ-
uals. The parameter s is a measure of heterozygosity in the
genotyped population, and it is not equal to observed
2
P​ piqi. The extension of this likelihood to multiple popu-

lations with different g’s in G is straightforward

log pðZjG; sÞ ¼ const2
pn2
2

logðsÞ2 p
2
log

#**AG
22
**$

2
p
2s

tr
!
AG21
22 ZZ9

"
;

where AG is the relationship matrix constructed with a given
G matrix and AG

22 is the submatrix corresponding to the
genotyped individuals. This likelihood can be factorized by
markers as

log pðZjG; sÞ ¼ const2
pn2
2

logðsÞ2 p
2
log

#**AG
22
**$

2
p
2s

Xnsnp

i¼1
zi9A

G21
22 zi:

The procedure can be completed by adding a prior distri-
bution to G and using a Bayesian estimator instead of maxi-
mum likelihood. The prior distribution for G can be assigned
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based on spatial or temporal distances; for instance, Latxa
sheep founders in 1990 and 1992 should be closer than
1990 and 2000. However, in none of these forms of the
likelihood can G be factorized out, and the maximization
of the likelihood needs to be done by a search method such
as Simplex or Monte Carlo methods. For this reason, we
present a method based on summary statistics.

Method of moments based on summary statistics: This
method matches summary statistics of across-individual and
within-individual relationships in both AG

22 (the matrix of ex-
tended pedigree-based relationships) and G (VanRaden et al.
2011; Vitezica et al. 2011; Christensen et al. 2012). This forces
the equivalence between expected changes of the mean and
variance under genetic drift (Vitezica et al. 2011; Christensen
et al. 2012) for the populations described by either the pedi-
gree or the genomic relationship matrices. For a set of n ran-
dom variables u with variance–covariance matrix K, the
sample average u ¼ 19u=n has a variance VarðuÞ ¼ K,
whereas the sample variance S2u ¼ u9u=n2u2 has expecta-
tion EðS2uÞ ¼ trðKÞ=n2K ¼ diagðKÞ2K (Searle, 1982, p.
355). The idea in the method is to force these two statistics
of K (VarðuÞ and EðS2uÞ) to be equivalent across both param-
eterizations (K ¼ AG and K ¼ G). We consider three
situations.

Single population: Two single unknowns need to be
estimated: g and s. Since g ¼ Að12 g=2Þ þ gJ, the average
of all elements is Ag

22 ¼ A22ð12 g=2Þ þ g, and the average
of the diagonal is diagðAg

22Þ ¼ diagðA22Þð1þ g=2Þ þ g,
where A22 is the regular pedigree-relationship matrix for
genotyped individuals. Therefore, a system of two equations
needs to be set up,

A22

%
12

g

2

&
þ g ¼ ZZ9=s

diagðA22Þ
%
12

g

2

&
þ g ¼ diagðZZ9Þ=s

with solutions

s ¼
diagðZZ9Þ 12A22=2

# $
2ZZ9

#
12diagðA22Þ=2

"

diagðA22Þ2A22

g ¼ ZZ9=s2A22

12A22=2
:

These solutions have an interpretation in terms of measures
of inbreeding in the population. In a population large
enough and mating at random, inbreeding of the individuals
is equal to half the relationships of their parents,
diagðA22Þ ¼ 1þ A22=2 ¼ 1þ FA (FA is average pedigree

inbreeding), and diagðZZ9Þ=s ¼ 1þ ZZ9=2s ¼ 1þ FG (FG
is average genomic inbreeding). Therefore, in this case
g=2 ¼ ðFG 2 FAÞ=ð12 FAÞ. This is basically the reverse of the

expression derived by Vitezica et al. (2011), who adjusted G to
match A and called g ¼ a. The expression shows that g is
a correction for underestimation of inbreeding of A with re-
spect to G, following Wright’s F coefficients theory. An advan-
tage of the method is that it needs only statistics of the A22 and
G matrices, which might be more available than full matrices.

Multiple pure populations: Assume that a sample from
each pure breed is genotyped. Consider the purebred parts
of G and AG

22, for simplicity 2 breeds A and B:

G ¼
%
GA;A GA;B

GB;A GB;B

&
¼

%
ZAZ 9

A ZAZ9B
ZBZ9A ZBZ9B

&+
s

AG
22 ¼

 
AG
22A;A AG

22A;B
AG
22B;A AG

22B;B

!

¼

A22A;A

 

12
gA

2

!

þ JgA JgA;B

JgA;B A22B;B

 

12
gB

2

!

þ JgB

0

BBBBB@

1

CCCCCA
:

To meet the conditions of unbiasedness we need to force the
equality of average diagonal and averages of G and AG and
set up the four equations

A22;A;A

 

12
gA

2

!

þ gA ¼ ZAZA 9=s

A22;B;B

 

12
gB

2

!

þ gB ¼ ZBZB9 s=

A22;A;B þ gA;B ¼ ZAZB9=s

diagðA22;A;AÞ
 
12

gA

2

!
þ gAþ diagðA22;B;BÞ

 
12

gB

2

!
þ gB

¼ diagðZZ9Þ=s:

The solution is a generalization of the solutions for single
populations. The scaling estimates for single populations are
sA ¼ dA=mA and sB ¼ dB=mB with

dA ¼ diagðZAZA9Þð12A22;A;A=2Þ

2ZAZA 9 12
diagðA22;A;AÞ

2

" #

and mA ¼ diagðA22;A;AÞ2A22;A;A, and dB and mB defined
similarly. The solutions for two populations are

s ¼ dAnA þ dBnB
mAnA þmBnB

gA ¼
GA;A 2A22A;A

12A22;A;A=2
; gB ¼

GB;B2A22B;B

12A22;B;B=2
; gA;B ¼ GA;B
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so that within-breed and across-breed average relationships
agree. Assuming A22;A;A A22;B;B are close to zero,
gA ¼ ðGA;A 2AA;AÞ; gB ¼ ðGB;B 2AB;BÞ; gA;B ¼ GA;B; which
consist in setting p ¼ 0:5 to construct theGmatrices (VanRaden
2008) and then simply quantify average relationships across
breeds. This is the simple method used by VanRaden et al.
(2011), although they did not define scaling s as we have done.
This reasoning can be extended to as many breeds as needed.
Again, this method can be used from published statistics without
access to raw data.

Populations with crosses: In some cases, pure populations
may not be genotyped. For instance, Angus bulls may be
mated to Limousine females and only the crossbreds and
Angus genotyped. Another example is unknown parent
groups (Quaas 1988), base populations that account for
missing parentages. However, at some point descendants
of these populations may be genotyped, and this informa-
tion is usable. We propose an algorithm very similar to that
of Harris and Johnson (2010). Let Q be a matrix containing
in the i; j cell the expected fraction of metafounder j in the
individual i (Quaas 1988). This matrix can be efficiently
obtained using Colleau (2002), recursion, or tracing down
the pedigree. The following identity, which is an extension
of Ag ¼ Að12 g=2Þ þ gJ, approximately holds

AG) AðI2 0:5 diag
#
QGQ9$$þQGQ9:

And therefore, AG
22 ) A22½I2 0:5 diag

#
Q2GQ2

9
$
& þQ2GQ9

2.
A linear model can be fit as G ¼ AG

22 þ E; where E is an error
term and Q2 is the section of Q containing proportions of
metafounders in genotyped individuals. We neglect the term
20:5 diagðQ2GQ2

9Þ, which is small with respect to the rest
of elements and obtain a further approximation G ¼ A22þ
Q2GQ9

2 þ E, in which G is explicit. This expression can be
linearized using the vec operator (Henderson and Searle
1979), and the least-squares estimator can be transformed
back to a matrix form. This least-squares estimator of G is

bG ¼
!
Q9
2Q2

"21
Q9
2ðG2A22ÞQ2

!
Q9
2Q2

"21

using G ¼ ZZ9=s and assuming that the value of s is known.
If only pure population animals are genotyped, this is iden-
tical to the approximation of the estimator above for “pure
populations.” This solution for G is identical to the estimator
proposed by Harris and Johnson (2010, Equations 13 and
14). As for s, one can use

s ¼ diagðZZ9Þ2ZZ9

diag
#
AG
22
$
2AG

22

;

where the approximation is used for AG
22 [in this case in-

cluding 20:5 diagðQGQ9Þ] such that diagðAG
22Þ and A22G

are linear functions of G: This system of two equations with
two unknown is iterated until convergence. If there is little
information for some metafounders (as is the case in ruminants),

Bayesian estimation using a prior structure for G can be
considered.

Combining pedigree relationships with metafounders
and genomic relationships when not all individuals
are genotyped

The SSGBLUP method for genomic evaluation (Aguilar et al.
2010; Christensen and Lund 2010; Legarra et al. 2014b)
completes genomic information with pedigree-based informa-
tion and in fact proceeds by correcting pedigree relationships
in view of genomic relationships. Pedigree relationships are
modified as (Legarra et al. 2009; Christensen and Lund 2010)

H ¼
%
A11 þ A12A21

22 ðG2A22ÞA21
22 A21 A12A21

22 G
GA21

22 A21 G

&
;

where H is a matrix with relationships after including pedi-
gree and genomic relationships, G is a matrix including ge-
nomic relationships for genotyped individuals ðu2Þ, which is
projected upon relationships of ungenotyped animals ðu1Þ, A
is the pedigree-based relationship matrix, and A22 is a rela-
tionship matrix across genotyped individuals. This joint ma-
trix H can be understood as a linear imputation of genotypes
over all nongenotyped individuals (Christensen and Lund
2010), considering also the uncertainty in the imputation.
This covariance matrix is increasingly used in genomic pre-
dictions of genetic merit (Aguilar et al. 2010; Christensen
et al. 2012) and also in QTL detection (Dikmen et al. 2013).

The algebraic development of matrix H assumes that base
allelic frequencies are known or, equivalently, that mean and
variance of the population do not change with time. This is
notoriously false with small populations, deep pedigrees, or
in presence of selection. Different adjustments had been
suggested to modify genomic relationships so that their ge-
netic base is the same as that of pedigree relationships
(Vitezica et al. 2011; Christensen et al. 2012). This implicitly
estimates the shift in breeding values (or allelic frequencies)
from the pedigree base to the genotyped population (Vitezica
et al. 2011). However, these adjustments do not consider the
pedigree structure of the populations, and their generaliza-
tions to crosses of lines or breeds are neither completely sat-
isfactory nor well understood (but see Harris and Johnson
2010; Makgahlela et al. 2014).

Christensen (2012) argued that, contrary to pedigree
relationships, genomic relationships are independent of ped-
igree completeness and they should define the genetic base.
He thus considered matching pedigree relationships to ge-
nomic relationships instead of the opposite. He showed that
after marginalizing the allelic frequencies from the joint
likelihood, the result was a related base population and
suggested estimating g and s using maximum likelihood.
All our developments rely on this base and therefore, the
extended pedigrees with metafounders do automatically
conciliate marker and pedigree-based relationships, using
estimates of G and s from markers. In particular, the inverse
of the joint pedigree and markers relationship matrix is
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HG21 ¼ AG21 þ
%
0 0
0 G21 2AG21

22

&
:

This matrix can be fit into the mixed model equations of the
SSGBLUP.

We have seen that the variance component assuming “re-
lated” founders is not the same as the genetic variance as-
suming “unrelated” founders; the latter is the one classically
estimated and used. The most straightforward solution is to
reestimate the variance using metafounders. Alternatively,
to use current estimates of genetic variance in the implemen-
tation, the variance of the breeding values needs to be scaled
to s2

unrelated. On expectation, the following equivalence holds:

s2
related ¼ s2

unrelated
'
k; with k ¼ 1þ diagðGÞ

2
2G

 !

:

Thus

VarðuÞ ¼ HGs2
related ¼ HGs

2
unrelated

k

and

VarðuÞ21 ¼ kHG21s22
unrelated ¼ kAG21s22

unrelated

þ
%
0 0
0 kG21 2 kAG21

22

&
s22
unrelated;

such that the inverse of the combined relationship matrix
(HG21) can be multiplied by a single scalar, k ¼
ð1þ diagðGÞ=22GÞ.

Examples

Example 1: How pedigree relationships are modified

Consider the pedigree in Figure 4 and the relationships be-
tween the subset of individuals 8 (pure breed A), 10 (pure
breed B) , and 14 (crossbred, 56% breed A and 44% breed
B, grandson of 8 and of 10). Regular relationships (Asubset)
are

Asubset ¼

0

@
1 0 0:31
0 1 0:25

0:31 0:25 1:06

1

A:

Consider now G ¼
%
0:1 0
0 0:2

&
. Then

Asubset ¼

0

@
1:05 0 0:35
0 1:03 0:31

0:35 0:31 1:08

1

A:

All within-breed relationships have increased, because each
base population is now assumed self-related. However,
animals 8 and 10 are unrelated. Considering across-base

population relationships in G ¼
%

0:1 0:05
0:05 0:2

&
gives

Asubset ¼

0

@
1:05 0:05 0:37
0:05 1:10 0:34
0:37 0:34 1:09

1

A;

where the relationship between 8 and 10 appears, which in
turn slightly increases the inbreeding coefficient of 14. To
standardize to the genetic variance estimated assuming
unrelated base individuals, Asubset must be divided by
ð1þ diagðGÞ=22GÞ ¼ 0:975:

Example 2: Interpretation of g in a single population

Legarra et al. (2014a) used dairy sheep data (Manech Tête
Rousse) for genomic prediction including 38,287 mark-
ers and 1295 rams. The relevant statistics are (ob-
served) 2

P​ piqi ¼ 14771, diagðZZ9Þ ¼ 22798, ZZ9 ¼ 8654,
diagðA22Þ ¼ 1:011, A22 ¼ 0:04: Using the single population
method above yields g ¼ 0:434, s ¼ 18602. What do these
numbers mean? They imply that heterozygosity of markers
at the base population should have been s ¼ 18602 (instead
of observed 14771), to appropriately match the fact that the
heterozygosity at the markers reduced from the base to the
observed population, according to inbreeding observed in
the pedigree. Based on this estimate, average genomic in-
breeding is 12diagðZZ9Þ=s ¼ 0:22; which can be achieved
with an effective size of the founder population Ne = 1/0.43
and therefore g ¼ 0:43. Although this effective size is very
small, it refers to a reference with allelic frequencies equal to
0.5. This has to be taken as a reference point for the linear
model and has no clear biological meaning.

Example 3: Numerical example of two breeds and
crossbred individuals

VanRaden et al. (2011) estimated relationship coefficients
across Jersey, Holstein, and Brown Swiss using 43,385
markers. Based on their published statistics and using the
method based on summary statistics outlined above, we

obtained an estimate of G ¼
%
0:55 0:48
0:48 0:77

&
for Holstein

and Jersey. Assuming the pedigree in Figure 5, we con-

structed A21 using G ¼
%
0 0
0 0

&
, which is equivalent to

use of regular unknown parent group rules (Quaas 1988)
and we also constructed AG21 as described before with

G ¼
%
0:55 0:48
0:48 0:77

&
; we scaled AG21 to refer to the same

regular genetic variance multiplying it by the constant
k ¼ 1þ diagðGÞ=22G: Results are shown in Figure 6.

It can be observed that the sparsity pattern does not
change, except for the nonnull values across metafounders.
Also, the numbers do not change greatly but diagonal
elements are higher because there is shrinkage associated
to the metafounders, which is not the case for regular
unknown parent groups.

Consider now the variance in the hypothetical crossed
Holstein–Jersey individuals. The segregation variance is, by the
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formula above, increased by ½ð0:55þ 0:77Þ=22 0:48&=4 ¼
0:045 compared to the variance in the F1.

Discussion

Conceptual developments

This work presents new conceptual developments for pedi-
gree relationships, including ancestral relationships at the
founders due to finite size of ancestral population and
across-base population relationships due to overlapping.
Such development is of conceptual interest per se (Kennedy
1991; VanRaden 1992; ter Braak 2010), but it is obliged for
genomic evaluations integrating genotyped and nongeno-
typed individuals. In practice regular genetic evaluations in-
cluding several base populations and their crosses assume
that ancestral populations are of infinite size and unrelated.
This leads to unsolved questions. For instance, assume three
pure breeds A, B, C and all of their F1 crosses, all in the same
environment. If breed A and B are more similar to each other
than to breed C, does this need to be included in the genetic
analysis? Another typical case is with ruminant population
with missing parentages, which are modeled as animals en-
tering from new base populations. These base populations
will become gradually more inbred (VanRaden 1992) and
they will drift from the oldest base population. Also, they
will be related (i.e., the unknown parent group “Holstein2004”
will be more related to “Holstein2002” than to “Holstein1994”).
All this can be conveniently modeled, estimated, and in-
cluded in the genetic evaluations using metafounders. As
genomic evaluation procedures are becoming more compre-
hensive, examples of these kind of problems are showing up
in the animal breeding literature: Harris and Johnson (2010),
Misztal et al. (2013), Makgahlela et al. (2014), Winkelman
et al. (2015).

Metafounders and unknown parent groups

Metafounders are closely related to unknown parent groups
or genetic groups (Thompson 1979; Quaas 1988). Genetic
groups allow estimation of different genetic bases across the
same population, which is necessary if the selection process
is unknown (i.e., importing animals or missing pedigrees).
Genetic values of individuals in a genetic group model can
be written as u ¼ u*þQg, where g has average values of
the genetic groups. Genetic groups are usually considered as
fixed but they can be conceived as random (Sullivan and
Schaeffer 1994). For random g and Varðu*Þ ¼ A and
rðgÞ ¼ G; Varðu*Þ ¼ A þQGQ9: This is similar to AG, but
does not correctly model crosses and overestimates inbreed-
ing. As pointed out by Kennedy (1991) this traditional for-
mulation of genetic groups did not consider inbreeding or
drift. Our work can be seen as a generalization of genetic
groups to include inbreeding, drift, and across-group rela-
tionships. This generalization overcomes the problems men-
tioned by Misztal et al. (2013), who realized that inclusion
of unknown parent groups into single-step methods in-
volved approximations in the setup of joint matrix H.

Inclusion of finite size ancestral populations in genetic
evaluation procedures has been largely neglected. Jacquard
(1969, 1974) work on relationships in closed populations has
been ignored. Independently, VanRaden (1992) made a first con-
tribution to palliate the lack of genealogical information in cattle.
He used inbreeding coefficients for unknown parent groups
based on inbreeding of contemporaries; here we suggest using
genomic information instead. Both ideas can possibly be merged.

A notion related to that of metafounders is partial rela-
tionships across pairs of individuals due to sharing alleles
from some particular origin. This allows modeling the genetic
value of an individual as a sum of genetic values from sev-
eral breeds, and this is known as “splitting breeding values”

Figure 6 Inverse of the numerator relationship matrix
with (up) unknown parent groups (equivalently, with
G= 0) or (down) with metafounders and Holstein–
Jersey G coefficients () scaled to the same genetic var-
iance. Pedigree as in Figure 5.
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(Garcia-Cortes and Toro 2006). The relationship matrix with
metafounders can be decomposed into such a structure, as
explained in the Supporting Information, File S1.

Metafounders and pedigree and genomic relationships

The use of metafounders with G relationships allows a reconcil-
iation of pedigree and genomic relationships and inbreeding
(Powell et al. 2010; Vitezica et al. 2011). Homozygosity (or
identity) can be considered as deviation from Hardy–Weinberg
equilibrium (Wright 1922). These deviations cannot be easily
measured because they depend on the assumed allelic frequen-
cies, which change in time. Considering unrelated founders
assumes that all founder alleles are different, which is not tena-
ble in view of marker information. By assuming 0.5 allelic fre-
quencies, the reference is constant and there are no ambiguities.

The fact that inbreeding automatically increases when
considering metafounders may seem worrying. If the objec-
tive of quantifying inbreeding is to describe the incertitude
a priori of inbred animals (i.e., inbred animals tend to be
more variable), this does not seem a concern. Use of pedi-
gree inbreeding with metafounders to quantify inbreeding
depression should not be problematic, for two reasons. The
first is that adding a constant (roughly g=2) to inbreeding
will not change estimates. The second is that, due to purge,
only “new” rate of inbreeding (DF) seems to have a measur-
able effect (e.g., Hinrichs et al. 2007). Recent inbreeding
could even be better estimated using metafounders (for in-
stance, in incomplete pedigrees; VanRaden 1992).

Genomic relationships are based on markers, and commer-
cial marker chips are often biased toward intermediate fre-
quencies or toward specific breeds. For instance many markers
conceived for Bos taurus are monomorphic in Bos indicus and
their use will result in biased estimates of G. For this reason, the
approaches in this work should be considered with caution for
such populations. Use of unbiased markers (e.g., from sequence
data or from random genotyping across the genome) will result
in more accurate estimates of relationships across metafound-
ers, if the populations are distant ones.

Genetic background across populations

Use of metafounders assumes a common genetic background
across all base populations. This is typically accepted as true
within breed, but breed itself is somewhat ill defined. Some
genomic predictions across breeds assume identical genetic
background (i.e., Hayes et al. 2009; Harris and Johnson 2010).
If the hypothesis of a homogeneous genetic background is not
acceptable, for instance, in the case of genetic–environment
interactions or scale effects, a genetic correlation model can
be used (Wei and Vanderwerf 1994; Karoui et al. 2012).

Empirical checking

Practical performance of our model has to be ascertained with
real data but we give an example of its interest. Winkelman
et al. (2015), using a simplified single-step GBLUP, reported
better performance of the Euclidean distance matrix relation-
ship matrix (Gianola and van Kaam 2008) across breeds and

their crosses, compared to G adjusted as in Harris and Johnson
(2010). We have observed that numerically, G matrices based
on EDM and Gmatrices based on 0.5 allelic frequencies tend to
be similar (unpublished). It would seem that the appeal of the
EDM relationship matrix is therefore its independence of within-
breed allelic frequencies, as proposed by Christensen (2012). In
this work, we have aimed at creating tools to make pedigree
relationships compatible with this kind of G matrices.

Conclusion

We have defined the notion of metafounders, which can be
understood as a limited pool of gametes fromwhich the founders
of the pedigree are drawn. Metafounders can also be understood
as a generalization of unknown parent groups or genetic groups,
which are essential in genetic evaluation of livestock. Use of
metafoundersmakes it possible to analyze pedigreed populations
allowing for relatedness within and across base populations,
something that is desirable for genetic evaluations combining
pedigree and genetic markers. Metafounders can account for
extra segregationvariancesdue tocrossesofpopulations.Efficient
algorithmsexist forcomputationof relationshipmatricesandtheir
inverses and inbreeding. Relationships across metafounders can
be inferred from marker data. By doing so, compatibility of
pedigree and genomic relationships iswarranted by construction.
Thiswork provides new tools and concepts for genetic evaluation
and management of populations.
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FILE S1 

Decomposition of relationships by population of origin and crosses (splitting breeding values). 

 

García‐Cortés and Toro (2006) suggested splitting crossbred relationships as sums of several relationship matrices, one by 

breed and segregation term. In our proposal, the overall relationship matrix can be decomposed in a similar manner, 

summing covariances across partial relationships matrices, each one by breed of origin or crosses of breeds. It can be 

shown that 
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where ࡭ሺ௕ሻ are partial relationship matrices for origin ܾ and matrices ࡯ሺ௕ሻ and ࡯ሺ௕,௕ᇲሻ describe the covariance of breed 

fractions across individuals, and they are calculated using rules that are derived below.	

 

Here, a recursive method for constructing ࡭ડ is presented in complete generality. An additive relationship matrix should 

satisfy the following recursions 

௜௜ડ࡭ ൌ 1 ൅ ௙ሺ௜ሻ௠ሺ௜ሻ࡭
ડ /2 
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ડ ൯/2 

where ݂ሺ݅ሻ and ݉ሺ݅ሻ denote the two parents of individual ݅, and individual ݅ᇱ is not a direct descendant of individual ݅.  

Matrix ࡭ડ is defined by base individuals in breed  1, ,b p } being related with relationship coefficient  bJ  and inbred 

with inbreeding coefficient  / 2bJ , and by base individuals in different breeds b bcz  being related with relationship 

coefficient  bb
J c . This may for the base population be expressed as 

  ' (1 / 2) ,b b b b
ii i b i bbii i

b b b
A f A f fJ J

c

c c c
c

 � �¦ ¦¦Γ  

where 
b
if  is the breed b  proportion of individual  i , and  b

ii
A c  is the usual additive relationship when  i iz c  and self‐

relationships when  i i c  between individuals in breed b  (and zero when individuals are not breed b ), and  bb bJ J . 

The recursions required for an additive relationship matrix are satisfied for this expression as long as all animals are 

purebred.  The recursions are also satisfied when individuals are crossbred with purebred parents with 
b
ii
A c  then denoting 

partial relationships (Garcia‐Cortes and Toro, 2006), but they are not satisfied in general. 

Here, we split 
ΓA  into several components and derive how the recursions look like for the components. The formula 

above suggests that  
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where 
bA  the breed b  specific partial relationship matrix (Garcia‐Cortes and Toro, 2006) such that 

  ( ) ( ) / 2,
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A A Ac c c �  

when individual  ic  is not a direct descendant of individual  i . Inserting the suggested form of 
ΓA  into the recursive 

formulas of 
ΓA  we obtain (having used 1 b

i
b
f ¦ ) that diagonal elements should satisfy  
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from which we obtain (having used  (1 / 2) / 2b b b
i i b i bf f fJ J � � ) that  ( ) ( ) / 2

b b b
ii i f i m iA f A �  is satisfied and  
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and off‐diagonal elements should satisfy 
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The description is completed by specifying that the recursions start by  1b
iiA  ,  0b

ii
A c  ,   1b b

ii ii
C C c   when  i  and 

i ic z  are base animals of breed b , and  
, 1b b
ii
C c

c   when  i  and  ic  are base animals in different breeds b  and bc . 

We note that elements in matrices 
bA  and 

bC  are only non‐zero for individuals which contain a breed b  proportion. 

The matrix 
,b bcC  is complicated, but the rule is that off‐diagonal elements are nonzero for pairs of individuals where one of 

them contain a breed b  proportion and the other a bc  proportion, and diagonal elements are non‐zero for individuals 

where one of its parent contain a breed b  and the other a breed bc  proportion (i.e. certain crossbred animals). 
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FILE S2 

Code for algorithms related to metafounders 

 

File S2 is available for download as a compressed file (metafounders_code.tar.gz) at 

www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.177014/‐/DC1 

 

 




