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  ABSTRACT 

  Currently, the USDA uses a single-trait (ST) model 
with several intermediate steps to obtain genomic 
evaluations for US Holsteins. In this study, genomic 
evaluations for 18 linear type traits were obtained with 
a multiple-trait (MT) model using a unified single-
step procedure. The phenotypic type data on up to 
18 traits were available for 4,813,726 Holsteins, and 
single nucleotide polymorphism markers from the Il-
lumina BovineSNP50 genotyping Beadchip (Illumina 
Inc., San Diego, CA) were available on 17,293 bulls. 
Genomic predictions were computed with several ge-
nomic relationship matrices (G) that assumed differ-
ent allele frequencies: equal, base, current, and current 
scaled. Computations were carried out with ST and 
MT models. Procedures were compared by coefficients 
of determination (R2) and regression of 2004 prediction 
of bulls with no daughters in 2004 on daughter devia-
tions of those bulls in 2009. Predictions for 2004 also 
included parent averages without the use of genomic 
information. The R2 for parent averages ranged from 
10 to 34% for ST models and from 12 to 35% for MT 
models. The average R2 for all G were 34 and 37% 
for ST and MT models, respectively. All of the regres-
sion coefficients were <1.0, indicating that estimated 
breeding values in 2009 of 1,307 genotyped young bulls’ 
parents tended to be biased. The average regression co-
efficients ranged from 0.74 to 0.79 and from 0.75 to 0.80 
for ST and MT models, respectively. When the weight 
for the inverse of the numerator relationship matrix 
(A−1) for genotyped animals was reduced from 1 to 
0.7, R2 remained almost identical while the regression 
coefficients increased by 0.11–0.26 and 0.12–0.23 for ST 
and MT models, respectively. The ST models required 
about 5 s per iteration, whereas MT models required 3 
(6) min per iteration for the regular (genomic) model. 
The MT single-step approach is feasible for 18 linear 

type traits in US Holstein cattle. Accuracy for genomic 
evaluation increases when switching ST models to MT 
models. Inflation of genomic evaluations for young bulls 
could be reduced by choosing a small weight for the 
A−1 for genotyped bulls. 
  Key words:    genomic evaluation ,  linear type trait ,  US 
Holstein 

  INTRODUCTION 

  Genomic selection in US Holsteins has been con-
ducted by the USDA-ARS Animal Improvement Pro-
grams Laboratory (Beltsville, MD) since 2008, using a 
multi-step procedure (MSP), where regular PTA are 
used to create genomic predictions (VanRaden, 2008). 
The MSP uses a single-trait (ST) model, and improved 
genomic relationships influence only the genotyped 
animals. 

  Misztal et al. (2009) proposed that genomic evalu-
ations be performed in a single-step procedure (SSP) 
with complete phenotypic, pedigree, and genomic infor-
mation. Aguilar et al. (2010) applied the SSP to obtain 
genomic EBV (GEBV) for final score of US Holsteins, 
where a pedigree-based relationship matrix (A) in the 
evaluation procedure is replaced by a matrix (H) that 
combines A and a genomic relationship matrix (G). 
They reported that accuracy and inflation of genomic 
evaluation varied with different G, with the best G de-
rived using equal allele frequencies (GE). The inflation 
of genomic evaluation could be reduced or eliminated 
with small modifications to the H matrix. Computing 
time of SSP with the ST model was close to that of a 
regular BLUP procedure with A. 

  Performance of SSP has been evaluated in other spe-
cies. Chen et al. (2011) used SSP to analyze 3 traits in 
2 separately selected lines of chickens. The improve-
ment in accuracy after adding the genomic information 
varied between the 2 lines, despite similar heritability 
for 3 traits. Variation in performance of the SSP in the 
2 lines was attributed to the different selection goals. 
Forni et al. (2011) used SSP to analyze litter sizes in 
pigs. Predictions obtained with different G were highly 
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correlated; however, heritability estimates varied by 
type of G, whereas heritability estimates were the same 
as with G scaled similarly to A.

Chen et al. (2011) investigated the effect of using 
different G and their scaling in chickens. Accuracy 
with G assuming current allele frequencies (GC) was 
marginally higher than that assuming GE. However, 
predictions from both G were biased. The bias could 
be eliminated by shifting G so that averages of off-
diagonals in G and in A for genotyped animals were 
equal within 0.001. The bias due to the incorrect offset 
of G was greater when the training population had 
low accuracy, and increased with stronger selection 
(Vitezica et al., 2010).

A multiple-trait (MT) animal model is currently used 
for the regular national genetic evaluation of linear type 
traits in US Holsteins. As more selection decisions are 
being made utilizing genomic information, it becomes 
critical that all genomic information be included in a 
single national evaluation. Substantial bias in genomic 
evaluations caused by selection on genotyped animals 
was reported by simulation studies of Patry and Du-
crocq (2009) and Liu et al. (2009). The objectives of 
this study were to evaluate the feasibility of an MT SSP 
using a large number of animals for 18 linear type traits 
in Holsteins for routine use, quantify the improvement 
in accuracy using an MT SSP compared with an ST 
SSP, and investigate how modifications to H, which 
combines G and A, reduce the inflation of GEBV.

MATERIALS AND METHODS

Data

Genetic SNP markers from the Illumina BovineSNP50 
genotyping Beadchip (Illumina Inc., San Diego, CA), 
consisting of 38,416 informative SNP, were available on 
17,293 Holstein bulls. Those SNP markers were con-
verted to 0, 1, or 2 for calculation of G as described 
in Aguilar et al. (2010). Two data sets, a reduced file 
having data up to the year 2004 and a full file having 
data up to the year 2009, were used. Comparing early 
predictions from the reduced 2004 file with the more 
recent 2009 data allowed us to assess reductions in bias 
and accuracy. Pedigree information included 7,860,183 
animals for cows with phenotypes and bulls with geno-
types. The 2004 data set included 7,715,925 phenotypic 
records on 4,813,726 cows. The 2009 data set included 
8,865,120 phenotypic records of 5,657,787 cows. Of the 
17,293 genotyped bulls, 6,913 bulls had genotypes in 
2004. Of the 6,913 bulls, 1,307 had no daughters with 
phenotypes in 2004 and at least 50 daughters with phe-
notypes in 2009.

Model

The MT animal model used in the genetic evaluation 
for 18 linear type traits is described in Tsuruta et al. 
(2005). In the genomic evaluation, the inverse of H 
(H−1) replaced the inverse of A (A−1). Aguilar et al. 
(2010) and Christensen and Lund (2010) describe the 
decomposition of H−1 as follows:
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where A22 is a pedigree-based numerator relationship 
matrix for 6,913 genotyped animals, and τ and ω are 
weight factors for G−1 and A22

1− , respectively. Using phe-
notypes and A−1, EBV in 2004 and 2009 were calcu-
lated with traditional ST and MT models. Using phe-
notypes and H−1 with pedigree and genomic relation-
ships, GEBV in 2004 were calculated with ST SSP and 
MT SSP, varying the weight (ω) on A22

1−  for genotyped 
animals. Changes in weights of G−1 were not investi-
gated (τ = 1) as this parameter had a small effect on 
accuracy and inflation (Misztal et al., 2010). The G 
used in our SSP genomic evaluations were centered on 
4 different allele frequencies: p = q = 0.5 (GE), base 
population allele frequencies calculated with the meth-
od of Gengler et al. (2007) (GB), derived directly from 
the genomic information (GC), and current allele fre-
quencies with G scaled to match A (GCS; Chen et al., 
2011).

Computation

To assess the bias of GEBV, regression coefficients 
(δ) of daughter deviations (DD), defined by Van-
Raden (2008), for traditional EBV in 2009 (EBV09) 
on GEBV in 2004 were calculated for the 1,307 young 
bulls with no daughters in the 2004 and with at least 50 
daughters in 2009. Coefficients of determination (R2) of 
the regression models were also calculated for the same 
bulls to quantify the accuracy of GEBV. Traditional 
EBV in 2004 were used to calculate parent average 
(PA). All EBV and GEBV were computed with the 
modified BLUP90IOD program (Tsuruta et al., 2001), 
which uses iteration on data with preconditioned con-
jugate gradient, on an Intel Xeon server with 2.93-GHz 
clock speed and 12 MB of cache memory. To improve 
the convergence rate, the preconditioned conjugate 
gradient algorithm used a block preconditioner (size = 
18) for MT models (Tsuruta and Misztal, 2008). The 
squared ratio of the norms of residual and right-hand-
side vectors for Cx = b (where C = coefficient matrix, 
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x = solution vector, and b = observation vector in 
a system of equations) was used as an indication of 
iterative convergence (i.e., || b – Cx ||2 / || b ||2). Con-
vergence criteria ranging from 10−11 to 10−16 and from 
10−11 to 10−12 were used to stop the program for ST and 
MT models, respectively.

RESULTS AND DISCUSSION

Almost all of the older genotyped bulls (born before 
2000) had classified daughters (Figure 1). The genomic 
evaluations of genotyped young bulls born after 2004 
had limited to no daughter information. Thus, the 
group of bulls providing the basis of comparison for the 
performance of different models was born between 2001 
and 2004. Some of these bulls would have been geno-
typed, evaluated, and then culled. Slightly fewer than 
half of the genotyped bulls in this period (2,619 bulls) 
had no daughters with phenotypic records in 2004, and 
of 2,619 bulls, 1,307 had at least 50 daughters with 
records in 2009 as mentioned before.

To assess the convergence rate, the R2 (%) and the 
number of rounds to convergence under several conver-
gence criteria are shown for strength as an example of 
18 traits in Table 1. Among the ST models, satisfac-
tory convergence was achieved at the criterion of 10−16. 
At the 10−14, 10−15, and 10−16 levels, differences in R2 
with different G were negligible. At a less conservative 
criterion of 10−11, the R2 were 7 to 10% lower than 
those at 10−14, and R2 seemed to be the highest with 
GE. No improvement was obtained using stricter con-

vergence criteria. Therefore, differences in GEBV with 
different G in dairy traits; for example, as in Aguilar 
et al. (2010), may be due to insufficient convergence. 
The necessary value of the convergence criterion can 
be determined based upon examination of R2 for PA, 
as patterns of convergence were similar for PA with 
different G, with a slight exception for GC. All ST 
models required about 5 s per one round of iteration. 
The number of rounds varied from about 100 with the 
criterion of 10−11 to a range of about 240 to 700 with 
10−14.

When using a block preconditioner of the precondi-
tioned conjugate gradient algorithm for MT models, the 
convergence pattern varied significantly. On the other 
hand, when using a scalar preconditioner, the conver-
gence pattern was smooth, although a large number of 
iterations (>5 times more than those for MT models, 
depending on allele frequencies and convergence crite-
ria) was required to reach convergence. Therefore, a 
scalar preconditioner was not used for MT models. For 
MT models with the convergence criterion 10−11, dif-
ferences in R2 with different G were smaller than for 
ST models. For the MT model with GB, reducing the 
criterion to 10−12 from 10−11changed R2 very slightly, 
with no change for PA. In this study, the criterion of 
10−11 seemed to be satisfactory for MT with GB. The 
number of rounds at 10−11 was about 330 with any al-
lele frequencies but increased to >2,000 at 10−12 for all 
MT models except with GB; the computer time per 
iteration was 3 min for PA (traditional models) and 6 
min with G. To improve the convergence rate for MT 

Figure 1. Distributions of genotyped bulls by year of birth: black bars = genotyped bulls with no daughter in 2004 and >50 daughters in 
2009; gray bars = genotyped bulls with daughters in 2009; white bars = all genotyped bulls.
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models, the block preconditioner could be modified. 
Further study is needed to clarify the cause of the slow 
convergence and the possibility of converging the MT 
models with other allele frequencies.

The R2 of DD regressions on GEBV for 1,307 geno-
typed bulls with no weight for A22

1−  are shown in Table 
2. The R2 for PA ranged from 10 to 34% for ST models 
and from 12 to 35% for MT models, with convergence 
criteria of 10−14 and 10−11, respectively. The relatively 
lower R2 obtained for the last 4 traits (teat length, rear 
legs rear view, feet and legs score, and rear teat place-
ment) may be due to the recent start of recording for 
those traits (i.e., 71, 69, 43, and 6% of 7,715,925 records 
in the complete file, respectively). The R2 for GEBV 
were about 16% higher on average than those for PA. 
For ST models, R2 for GEBV were similar and averaged 
34.6% with GE, 34.1% with GB, 34.2% with GC, and 
34.6% with GCS. Aguilar et al. (2010) reported 4% 
difference in R2 among different G for final score. How-
ever, by using a stricter convergence criterion (e.g., 
<10−13), differences among those R2 became negligible. 
Vitezica et al. (2010) and Chen et al. (2011) suggested 
using GCS as a general way to increase accuracies of 
GEBV. In those studies, GEBV of the training popula-
tion had low accuracy, and therefore, incorrectly scaled 
G could reduce accuracy for the training population. In 
dairy, GEBV of the training population had relatively 
high accuracies and the original G was similar to A. As 
a result, the type of G had a small effect on GEBV of 
the training population. In general, the improvement of 
GEBV over EBV is dependent upon the trait and the 
population structure.

Ideally, δ values of DD from 2009 on PA and GEBV 
from 2004 should be 1.0. Table 3 shows the regression 

coefficients for 1,307 genotyped bulls with at least 50 
daughters when no weight for A22

1−  (i.e., ω = 1.0) was 
used for ST and MT models with the same convergence 
criteria as in Table 3 (i.e., 10−14 and 10−11, respectively). 
A δ value <1.0 denotes a higher GEBV than DD of 
EBV09, indicating that GEBV were overestimated or 
that EBV09 were underestimated. All of the δ values 
for PA were <1.0, indicating that EBV09 of 1,307 
genotyped young bulls’ parents tended to be biased. 
The average δ ranged from 74 to 79 and from 75 to 80 
for ST and MT models, respectively. In general, the δ 
values were similar for all models and traits. For ST 
and MT models with ω = 1.0, the highest values of δ 
were obtained when using GE and the lowest with GC. 
Small differences between δ values using ST and MT 
models suggest that biases are not due to selection on 
correlated type traits. Similar δ values for all 4 options 
indicate that biases could be systematic in US Holsteins 
when using pedigree and genomic information without 
phenotypic data. Whereas some of the biases can be 
due to preferential treatment, some of the bias can be 
due to the structure of a dairy population that cannot 
be fully modeled. For example, such biases are present 
in the Israeli population where only young sires are 
used and there is no preferential treatment (J. Weller, 
Institute of Animal Science, Bet Dagan, Israel, personal 
communication, 2010). On average, the bias was small-
est and R2 highest with GE. Although the use of GE in 
broilers resulted in biases (Chen et al., 2011), in dairy 
the bias due to GE may be partially compensating the 
bias present in PA, which is systemic to the dairy 
population.

In a preliminary analysis, we tested various combina-
tions of τ and ω ranging from 0.1 to 1.5 and found that 

Table 1. Coefficients of determination (R2, %) of daughter deviations in 2009 on genomic evaluations of 1,307 genotyped young bulls in 2004 for 
strength and number of rounds for single-trait and multiple-trait models with equal, base, current, and scaled current allele frequencies (number 
of rounds in parentheses) 

Convergence  
criterion

Single-trait model Multiple-trait model

PA1 Equal Base Current
Scaled  
current PA Equal Base Current

Scaled  
current

10−11 22.1 33.1 30.5 29.6 30.7  29.4 45.2 44.6 43.1 45.1
 (98) (107) (98) (97) (98)  (324) (338) (329) (346) (332)
10−12 22.4 38.6 38.0 37.0 38.2  29.4 NA2 44.8 NA NA
 (151) (145) (145) (143) (144)  (565)  (561)
10−13 24.9 40.5 40.0 39.6 40.2  NA NA NA NA NA
 (224) (221) (219) (254) (209)  
10−14 25.2 40.6 40.1 40.5 40.4  NA NA NA NA NA
 (278) (529) (238) (696) (541)  
10−15 25.2 40.6 40.1 40.5 40.5  NA NA NA NA NA
 (285) (701) (279) (750) (724)  
10−16 25.2 40.6 40.2 40.6 40.5  NA NA NA NA NA
 (700) (756) (554) (790) (788)  
1Parent average from genetic evaluation in 2004.
2NA = not available.
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ω values of 0.5 or 0.7 and τ = 1 resulted in the least 
bias without affecting accuracy. This result indicates 
that contributions from A G A22 1

22
1+ −− −ω  (i.e., 

A A22
22
1− −ω  or G−1) are too small to estimate unbiased 

GEBV for young genotyped bulls. To reduce the infla-
tion of GEBV for bulls with only genomic information, 
A A22

22
1− −ω  or G−1 can be increased. Table 4 shows that 

all δ values with ω = 0.7 for ST and MT models were 
higher and closer to 1.0 than those with ω = 1.0. By 

using ω = 0.7 for A22
1− , H−1 for genotyped animals, 

A G A22 1
22
1+ −− −ω , becomes larger than that with no 

weight (ω = 1.0); therefore, absolute values of GEBV 
for genotyped will be smaller, resulting in a higher δ or 
less bias in GEBV. With ω = 0.7, R2 were the same for 
both ST and MT models, whereas the δ values were 
0.11 to 0.26 higher for the ST models and 0.12 to 0.23 
higher for the MT model with scaled G. In a study in-
volving final scores of US Holsteins (Misztal et al., 

Table 2. Coefficients of determination (R2, %) of daughter deviations in 2009 on genomic evaluations in 2004 using single-trait and multiple-
trait models with equal, base, current, and scaled current allele frequencies for genotyped bulls with at least 50 daughters 

Trait

Single-trait model Multiple-trait model

PA1 Equal Base Current
Scaled  
current PA Equal Base Current

Scaled  
current

Stature 34 55 55 54 55  35 55 55 54 55
Strength 25 41 40 41 41  29 45 45 43 45
Body depth 28 45 45 45 45  30 48 47 46 48
Dairy form 20 40 40 39 40  21 42 41 39 41
Rump angle 25 45 44 45 45  25 45 45 45 45
Thurl width 29 42 42 42 42  31 45 45 43 45
Rear legs side view 14 27 26 26 27  16 29 29 29 29
Foot angle 15 25 24 25 25  21 33 32 32 33
Fore udder attachment 14 34 33 34 34  17 40 39 36 40
Rear udder height 18 33 32 33 33  19 36 35 31 36
Rear udder width 16 30 29 29 30  18 33 33 29 33
Udder cleft 19 33 32 32 33  20 36 35 34 36
Udder depth 17 40 40 40 40  17 42 41 41 42
Front teat placement 16 37 36 36 36  17 39 38 36 38
Teat length 12 31 30 31 31  12 32 31 31 31
Rear legs rear view 10 18 19 18 19  13 23 23 22 23
Feet and legs score 10 19 19 18 19  12 23 22 21 23
Rear teat placement 13 28 27 27 28  16 37 36 35 36
1Parent average from genetic evaluation in 2004.

Table 3. Regression (δ × 100) of daughter deviations in 2009 on genomic evaluation in 2004 using single-trait and multiple-trait models with 
equal, base, current, and scaled current allele frequencies for genotyped bulls with at least 50 daughters 

Trait

Single-trait model Multiple-trait model

PA1 Equal Base Current
Scaled  
current PA Equal Base Current

Scaled  
current

Stature 86 86 83 82 83  87 86 83 84 84
Strength 78 78 75 74 75  80 78 76 75 75
Body depth 78 77 75 73 76  78 78 75 74 75
Dairy form 78 83 79 76 80  78 86 82 78 83
Rump angle 86 94 89 90 91  85 93 91 90 90
Thurl width 88 85 82 82 83  87 86 83 81 83
Rear legs side view 82 77 72 72 73  81 79 76 76 76
Foot angle 75 73 68 68 69  75 72 69 70 69
Fore udder attachment 70 75 71 70 72  74 78 74 72 75
Rear udder height 71 74 67 68 71  69 74 70 66 71
Rear udder width 67 71 65 64 68  66 71 67 63 68
Udder cleft 84 85 79 80 82  83 87 82 79 84
Udder depth 81 84 81 80 81  78 85 82 82 83
Front teat placement 76 83 78 78 80  76 84 80 77 81
Teat length 75 82 77 77 78  74 83 79 78 79
Rear legs rear view 69 71 68 62 67  67 67 63 63 63
Feet and legs score 64 60 56 53 56  63 61 57 56 57
Rear teat placement 84 92 85 80 86  80 89 84 81 85
1Parent average from genetic evaluation in 2004.



Journal of Dairy Science Vol. 94 No. 8, 2011

GENOMIC EVALUATION FOR HOLSTEIN LINEAR TYPE 4203

2010), the authors reported that smaller ω increased δ 
but reduced R2 slightly. Assuming that bias of ±15% is 
acceptable, 15 out of 18 traits would fall into this cat-
egory. In addition, the smaller weight for A22

1−  did not 
affect GEBV for old genotyped bulls because G−1 for 
those bulls was larger than .A22

1−  A smaller weight (e.g., 
ω = 0.5) could produce less-biased GEBV for traits 
that still have δ <1.0 with small or no reduction in R2 
but could underestimate GEBV for traits that have δ 
>1.0. Therefore, ω = 0.7 or 0.5 should be used as a 
common weight factor for all 18 traits. To reduce bias, 
the source needs to be determined for any trait. In par-
ticular, the elimination of biases in GEBV requires 
knowledge about their sources with PA. If the sources 
are unknown, the most effective way to avoid accumu-
lation of biases over multiple cycles of genomic selection 
may be the continued collection of phenotypes.

CONCLUSIONS

The multiple-trait single-step approach is feasible for 
18 linear type traits in the national genetic evaluation 
of US Holstein cattle. The use of the multiple-trait 
model and genomic information leads to an increase 
in computational costs, whereas the single-trait model 
does not increase computational time. Accuracy for ge-
nomic evaluation increases when switching from single-
trait models to multiple-trait models, but the increase 
depends on traits. Inflation of genomic evaluations for 
young bulls could be reduced without affecting accuracy 
by choosing a small weight to account for contributions 

from the inverse of the numerator relationship matrix 
for genotyped bulls. Using 0.7 for the weight could be 
a common factor for all 18 linear type traits; however, 
further study should be conducted to reduce the bias of 
genomic evaluations for any traits.
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