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  ABSTRACT 

  Data sets of US Holsteins, Israeli Holsteins, and pigs 
from PIC (a Genus company, Hendersonville, TN) were 
used to evaluate the effect of different numbers of gen-
erations on ability to predict genomic breeding values 
of young genotyped animals. The influence of including 
only 2 generations of ancestors (A2) or all ancestors 
(Af) was also investigated. A total of 34,506 US Hol-
steins, 1,305 Israeli Holsteins, and 5,236 pigs were geno-
typed. The evaluations were computed by traditional 
BLUP and single-step genomic BLUP, and computing 
performance was assessed for the latter method. For 
the 2 Holstein data sets, coefficients of determination 
(R2) and regression (δ) of deregressed evaluations from 
a full data set with records up to 2011 on estimated 
breeding values and genomic estimated breeding val-
ues from the truncated data sets were computed. The 
thresholds for data deletion were set by intervals of 5 
yr, based on the average generation interval in dairy 
cattle. For the PIC data set, correlations between 
corrected phenotypes and estimated or genomic esti-
mated breeding values were used to evaluate predictive 
ability on young animals born in 2010 and 2011. The 
reduced data set contained data up to 2009, and the 
thresholds were set based on an average generation 
interval of 3 yr. The number of generations that could 
be deleted without a reduction in accuracy depended 
on data structure and trait. For US Holsteins, removing 
3 and 4 generations of data did not reduce accuracy 
of evaluations for final score in Af and A2 scenarios, 
respectively. For Israeli Holsteins, the accuracies for 
milk, fat, and protein yields were the highest when only 
phenotypes recorded in 2000 and later were included 
and full pedigrees were applied. Of the 135 Israeli bulls 
with genotypes (validation set) and daughter records 
only in the complete data set, 38 and 97 were sons of 
Israeli and foreign bulls, respectively. Although more 

phenotypic data increased the prediction accuracy for 
sons of Israeli bulls, the reverse was true for sons of 
foreign bulls. Also, more phenotypic data caused large 
inflation of genomic estimated breeding values for sons 
of foreign bulls, whereas the opposite was true with the 
deletion of all but the most recent phenotypic data. 
Results for protein and fat percentage were different 
from those for milk, fat, and protein yields; however, 
relatively, the changes in coefficients of determination 
and regression were smaller for percentage traits. For 
PIC data set, removing data from up to 5 generations 
did not erode predictive ability for genotyped animals 
for the 2 reproductive traits used in validation. Given 
the data used in this study, truncating old data reduces 
computation requirements but does not decrease the 
accuracy. For small populations that include local and 
imported animals, truncation may be beneficial for one 
group of animals and detrimental to another group. 
  Key words:    single-step genomic BLUP ,  pedigree 
depth ,  genomic selection ,  dairy cattle 

  INTRODUCTION 

  Quantitative genetics theory postulates that accuracy 
of genetic evaluations increases if all known ancestors 
are included in construction of the relationship matrix 
(Henderson, 1984), provided that the analysis model 
corresponds to reality. However, models used in practice 
are only approximations of “true” models. For example, 
definitions of traits change over time, accounting for 
selection may be incomplete, and nonadditive genetic 
effects are ignored in the model. Also, the contribu-
tions of distant generations decay with time. Although 
parents can explain up to 50% of the genetic variation 
in an animal, this fraction is divided by 4 with each 
previous generation. Therefore, the effect of distant 
ancestors on the accuracy of the youngest animals can 
be small or even negative. Furthermore, larger data sets 
require more computing resources. 

  Mehrabani-Yeganeh et al. (1999) studied the selection 
response in a simulated population. The accuracy of 
evaluation for the most recent generation was the same 
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regardless of whether all 9 or only the last 2 generations 
of data were used. The mean simulated breeding value 
of the selected animals was the same in both scenarios, 
but mean inbreeding of selected animals was lower for 
the truncated data set.

In initial predictions with genomic selection, the 
decay of accuracy for subsequent generations without 
phenotypes was much slower than with the traditional 
selection (Meuwissen et al., 2001). Muir (2007) found 
that the decay of accuracy in genomic selection is much 
faster under strong selection. In a real population of 
broiler chickens, that decay was faster than initially ex-
pected but still slower than in traditional BLUP (Wolc 
et al., 2011); the rate of decay changed only slightly 
for different methods, with lesser decay with bivariate 
genomic BLUP (GBLUP) and BayesCπ (Habier et al., 
2011) than with univariate GBLUP. If the decay in 
accuracy is faster than expected, the contributions of 
older generations may be overestimated with genomic 
selection.

Recently, Misztal et al. (2013) studied possible biases 
with unknown parent groups (UPG) in a single-step 
genomic evaluation (ssGBLUP). In this method, 
calculation of unbiased GEBV requires scaling the 
genomic relationship matrix (G) to make this matrix 
compatible with the numerator relationship matrix for 
the genotyped animals (A22) (Chen et al., 2011; Vitezi-
ca et al., 2011). Too-small G causes downward bias for 
the genotyped animals relative to all the animals, and 
too-large G causes upward bias. The additive relation-
ships for the young animals depend on the length of 
their pedigrees. Because scaling of G is for an average 
of A22, GEBV for young animals may be biased up or 
down depending on the length of the pedigree, with a 
corresponding decrease in accuracy. A partial solution 
for this problem is to delete pedigree and phenotypic 
data of older generations. In this case, missing informa-
tion from the eliminated pedigrees does not bias evalu-
ations.

The purpose of this study was to evaluate the effect 
of deleting phenotypic and pedigree data on the accu-
racy of young genotyped animals in several populations 
and different traits.

MATERIALS AND METHODS

Three different data sets were analyzed in this study: 
US Holstein final score data provided by Holstein As-
sociation USA Inc. (Brattleboro, VT); Israeli Holstein 
305-d milk, fat, and protein yields and fat and protein 
percentage data provided by Israel Cattle Breeders As-
sociation (Caesaria, Israel); and pig reproductive traits 
from purebred and crossbred lines, provided by PIC 
(a Genus company, Hendersonville, TN). For all data 

sets, variance components were estimated based on the 
full data using phenotypes and pedigree. Multiple spe-
cies and a range of population structures were included 
to give this study a broad application. Animal Care 
and Use Committee approval was not obtained for this 
study, because the data were obtained from existing 
databases.

US Holsteins

Data. Initially, 2 data sets were prepared for US 
Holsteins. The full data set contained 10,944,571 final 
score records up to 2011 for 6,586,605 cows born from 
1951 to 2009, and a reduced data set (TR) included 
10,167,064 records up to 2007 for 6,012,441 cows born 
from 1951 to 2006. Records were deleted from the re-
duced data set to exclude data of cows born before 5 
different thresholds. The thresholds set according to an 
approximate average generation interval of 5 yr in dairy 
cattle were T1980, T1985, T1990, T1995, and T2000. 
Thus, T1980 comprised data of cows born from 1980 
to 2006 with records up to 2007, with the same proce-
dure applied for the other 4 thresholds. Two scenarios 
for constructing the numerator relationship matrix 
(A) were used. The first scenario included relatives of 
phenotyped animals traced back 2 generations (short 
pedigree = A2); the second scenario included all known 
relatives of phenotyped animals (deep pedigree = Af). 
The number of animals included in A and the number 
of phenotypes available for each data set are shown in 
Table 1.

After a general quality control analysis, genotypes on 
42,503 SNP markers from the BovineSNP50K Bead-
Chip (Illumina Inc., San Diego, CA) were available for 
34,506 bulls.

Model. A single-trait animal model was used for 
evaluation of final score (Tsuruta et al., 2002). The 
heritability for this trait is 0.31 (Table 2). Unknown 
parent groups were assigned for missing parents accord-
ing to year of birth and sex. Traditional evaluations 
(BLUP) were performed for all data sets, whereas ge-
nomic evaluations were not performed for the full data 
set. Pedigree, genotypes, and phenotypes were analyzed 
by ssGBLUP (Aguilar et al., 2010). In this method, 
the inverse of matrix A is replaced by the inverse of 
matrix H in the mixed model equations. H inverse is 
as follows:
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where G was constructed as in VanRaden (2008), using 
current allele frequencies; A22

1−  is the inverse of pedigree-
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based relationship matrix for genotyped animals; τ and 
ω are scaling factors for G−1and A22

1− , respectively. Both 
factors were investigated by Misztal et al. (2010) for 
final score for US Holsteins. Changes in τ had little ef-
fect on accuracy and prediction bias, but ω < 1 helped 
to reduce the inflation of GEBV. The values chosen in 
this study were 1.0 for τ and 0.7 for ω (Tsuruta et al., 
2011). Weights for G (α = 0.95) and A22 (β = 0.05) can 
avoid singularity problems and slightly improve predic-
tions (VanRaden, 2008).

Validation. The validation method was chosen 
based on VanRaden et al. (2009). The following regres-
sion model was used to assess prediction bias of evalu-
ations:

DDfull = μ + δXTx + e,

where DDfull are deregressed evaluations of 2,232 geno-
typed bulls born after 2003 and with no daughters in 
the reduced and threshold data sets but with ≥20 
daughters in the full data set; μ is mean; δ is a regres-
sion coefficient and will be referred to as prediction 
bias; XTx is a bull’s parent average (PA) or GEBV 
based on the reduced or threshold data sets (TR, 
T1980, T1985, T1990, T1995, and T2000); and e is 
the residual. Values of δ close to 1 indicate a 1:1 ratio 
in changes in the evaluation and in the trait (Wiggans 

et al., 2011). The linear regression model was weighted 
by reliability of DDfull. According to VanRaden (2008), 
DDfull can be obtained as follows:

 DD  
EBV PA

PAfull
full full

full
full

–
,= +

R
 

Table 1. Data structure1 

Data Threshold2

A2 Af

Records (no.)Animals (no.)
Animals  

removed (%) Animals (no.)
Animals  

removed (%)

US Holstein Full 9,106,249 0.00  9,602,031 0.00 10,944,571
TR 9,106,249 0.00  9,602,031 0.00 10,167,064
T1980 7,369,426 0.19  8,588,711 0.11 7,530,770
T1985 6,305,553 0.31  7,388,211 0.23 5,741,868
T1990 5,025,481 0.45  6,175,923 0.36 3,808,580
T1995 3,594,892 0.61  4,692,257 0.51 2,295,754
T2000 2,392,963 0.74  3,363,998 0.65 1,123,896

        
Israeli Holstein Full 826,653 0.00  829,398 0.00 1,543,830

TR 826,653 0.00  829,398 0.00 1,205,801
T1990 731,141 0.12  748,714 0.10 930,429
T1995 588,165 0.29  637,624 0.23 607,876
T2000 434,931 0.47  516,574 0.38 267,486

        
PIC Full 681,907 0.00  682,764 0.00 2,176,298

TR 681,907 0.00  682,764 0.00 1,750,226
T1991 677,081 0.01  679,329 0.01 1,736,607
T1994 655,511 0.04  658,984 0.03 1,650,003
T1997 628,034 0.08  632,780 0.07 1,550,846
T2000 611,206 0.10  617,079 0.10 1,498,259
T2003 553,573 0.19  561,299 0.18 1,271,455
T2006 472,154 0.31  482,811 0.29 930,152

1A2 = short pedigree (including only 2 generations of ancestors) and Af = deep pedigree (including all ancestors).
2Full = complete data set and contains data up to 2011 for US and Israeli Holsteins and up to 2012 for PIC data (pig data from Genus, 
Hendersonville, TN); TR = reduced data set and contains data up to 2007 for US Holsteins, 2006 for Israeli Holsteins, and 2009 for PIC data; 
the other thresholds contain data from the indicated year up to 2007, 2006, and 2009 for the 3 data sets, respectively.

Table 2. Heritabilities of all evaluated traits 

Data Trait Heritability

US Holstein Final score 0.31
Israeli Holstein Milk (yield) 

 Parity 1 0.39
 Parity 2 0.29
 Parity 3 0.27
Fat (yield and %) 
 Parity 1 0.42
 Parity 2 0.38
 Parity 3 0.34
Protein (yield and %) 
 Parity 1 0.34
 Parity 2 0.29
 Parity 3 0.27

PIC1 Trait 1 0.14
Trait 2 0.11
Trait 3 0.15
Trait 4 0.09

1Pig data from PIC (Genus, Hendersonville, TN). 
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where the fraction is the deregressed Mendelian sam-
pling; Rfull is the deregression factor obtained by:

 Rfull
animal

animal PA
= 

DE
DE + DE

,
+1

 

where DEanimal is equivalent daughter contributions 
from the animal and its progeny and DEPA is equivalent 
daughter contributions from parent averages. The sub-
script “full” indicates that the values were calculated 
from the full data set.

The coefficient of determination (R2) of this model 
was used to quantify the validation reliability of PA 
and GEBV. Regression of DDfull on PA was the bench-
mark used to compare the gain in predictive ability 
due to genomics, and regressions of DDfull on reduced 
or threshold data sets were used to compare the re-
sponse in predictive ability due to the exclusion of old 
data (T1980 to T2000). Although DD is not the only 
response variable that can be used for validation, it is 
easier to obtain and has been widely adopted (Van-
Raden et al., 2009; Tsuruta et al., 2011; Wiggans et 
al., 2011).

Israeli Holsteins

Data. For Israeli Holsteins, the full data set con-
tained 305-d milk, fat, and protein (yield traits) and fat 
and protein percentages (percentage traits), for cows 
born from 1982 to 2010, with 713,686 records for parity 
1, 503,827 records for parity 2, and 326,317 records 
for parity 3. The cows calved from 1985 through 2011. 
The reduced data set included only production records 
through 2006 for 563,870 cows, with records for parity 
1, 391,977 records for parity 2, and 249,954 records for 
parity 3. The cows were born from 1982 to 2005. From 
this reduced data set (TR), 3 different thresholds for 
data truncation were applied: T1990: cows born before 
1990 were deleted from the reduced data and pedigree; 
T1995: cows born before 1995 were deleted; and T2000: 
cows born before 2000 were deleted. The 2 scenarios 
with respect to the depth of the pedigree (A2 and Af) 
were also applied. The numbers of animals in the pedi-
gree relationship matrices and phenotypes available for 
each data set are shown in Table 1. Heritabilities for all 
traits and parities are in Table 2.

A total of 1,305 bulls were genotyped for the Illumina 
BovineSNP50 BeadChip (Illumina Inc.), which includes 
approximately 54,000 markers. After quality control, 
30,359 SNP remained in the genotype file.

Model. A multiparity animal model has been used in 
Israel for routine evaluation of each one of the produc-
tion traits (Weller and Ezra, 2004). The same model 
was used in this study to compute traditional genetic 

evaluation for parities 1 through 3 as correlated traits. 
The model was analyzed with and without UPG; UPG 
were defined based on year of birth, sex, and which 
parents were missing. A small fraction of the ancestor 
bulls were not Holsteins and additional groups were de-
fined for these animals based on breed. When pedigrees 
were truncated, UPG assignments were left intact in 
retained pedigrees, whereas base animals generated by 
deletion of their ancestors were set to a common group.

For genomic evaluations, the H matrix was con-
structed and scaled in the same way as for US Holsteins 
evaluations.

Validation. The same validation method (VanRaden 
et al., 2009) was used for US and Israeli Holstein data 
sets. However, for Israeli data, DDfull are deregressed 
evaluations of 135 genotyped bulls born after 2001 and 
with no daughters in the reduced and threshold data 
sets, but with ≥20 daughters in the full data set; XTx 
is a bull’s PA or GEBV based on the reduced (TR) 
or threshold data sets (T1990, T1995, and T2000). Of 
the validation bulls, 38 were sons of Israeli sires and 97 
were sons of foreign sires. All dams were local cows with 
records in the Israeli database. The Israeli sires all had 
genetic evaluations based on progeny tests in Israel, 
whereas the foreign sires generally did not.

PIC Pigs

Data and Model. The PIC pig data set consisted 
of phenotypes collected in purebred and crossbred ani-
mals for 4 reproductive traits: litter size and number of 
stillborn for purebreds (traits 1 and 2, respectively) and 
crossbreds (traits 3 and 4, respectively). The heritabili-
ties for the 4 traits ranged from 0.09 to 0.15 (Table 2). 
The full data set included at least 2,176,298 records for 
655,037 animals born from 1971 to 2012. The reduced 
data set contained at least 1,750,226 records for 468,486 
animals born from 1971 to 2009. From the reduced data 
set, 6 thresholds were established according to an aver-
age generation interval of 3 yr in pigs: T1991, T1994, 
T1997, T2000, T2003, and T2006. Similar to the previ-
ous data sets, T1991 included data of animals born 
from 1991 to 2009 with records up to 2009, whereas 
T2006 included only data from 2006 to 2009. Similarly, 
the data sets were analyzed including all known ances-
tors (Af) and only 2 generations (A2). A 4-trait animal 
model with permanent environmental effect was used 
to evaluate this data set. The numbers of animals in the 
pedigree relationship matrices and phenotypes included 
in each data set are shown in Table 1.

Genotypes from the Illumina PorcineSNP60K chip 
(~64,000 SNP; Ramos et al., 2009) were available for 
5,236 animals. After quality check procedures, only 
35,324 SNP were retained for analysis. For genomic 
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evaluations, the H matrix was constructed in the same 
way as for Holsteins, but with different scaling. Values 
for α, β, τ, and ω were 0.7, 0.3, 0.7, and 0.8, respectively.

Validation. The validation method adopted for the 
PIC data set was chosen based on Christensen et al. 
(2012); therefore, it was different from the validation 
used for the Holsteins. Predictive ability of evaluations 
using full and recent data sets was defined as the cor-
relation between breeding value and phenotypes cor-
rected for fixed and random effects other than genetic 
additive and residual:

 r X Y, ),= cor( Tx c_full  

where r is interpreted as accuracy of evaluations; Yc_full 
are corrected phenotypes from full data set of 1,034 
genotyped pigs born in 2010 and 2011 and with no data 
in the reduced and threshold data sets; XTx is EBV or 
GEBV based on the reduced (TR) or threshold data 
sets (T1991, T1994, T1997, T2000, T2003, and T2006). 
Because young genotyped animals were purebred and 
had no phenotypes on traits 3 and 4, validations were 
not performed for these traits.

RESULTS AND DISCUSSION

Figure 1 presents R2 and regression coefficients (δ) of 
DDfull on PA and GEBV from reduced and threshold 
data sets for US Holstein in A2 and Af scenarios. The 
R2 for PA did not change significantly with the removal 
of any quantity of the historical data, whereas R2 for 
GEBV declined after T1995 when all pedigree data 
were included and at T2000 with A2. We also observed 
a decline with A2 when very old data were included. 
The presence of older pedigree data when older pheno-
types were removed reduced the accuracy slightly. The 
regressions for PA were stable, except for a decline at 
T2000. The regressions for GEBV were slightly increas-
ing. They were higher than those for PA because of 
the ω parameter (Tsuruta et al., 2011). Summarizing, 
eliminating the data before 1990 or perhaps even 1995 
did not decrease the accuracy. This period included 12 
to 17 yr or 2 to 3 generations.

Plots for Israeli Holsteins (Figure 2) are presented for 
models with and without UPG. When the model did 
not contain UPG, nearly all R2 for milk, fat, and pro-
tein increased when more phenotypes were eliminated. 
In fact, the highest R2 was for T2000. The opposite 
occurred for fat and protein percentages, although the 
relative change was much smaller. In general, R2 were 
lower with truncated pedigrees for milk, fat, and pro-
tein, and similar or slightly higher for fat percentage 
and protein percentage.

As noted, most of the Israeli validation bulls were 
sons of foreign bulls. The ancestors of the foreign bulls 
generally did not have records in Israel. Therefore, R2 
in the model with UPG that accounted for different ge-
netic origins was higher and followed a similar pattern 
as in the model without UPG (Figure 2). Thus, for the 
yield traits, the highest R2 values were obtained with 
all phenotypes before 2000 deleted. Conversely, the low-
est R2 values were obtained for the concentration traits 
with all phenotypes before 2000 eliminated. These ap-
parently conflicting results can be explained in 2 ways. 
First, adjustments in the older data were detrimental 
to the accuracy of some, but not all, traits. The other 
possibility is that the influence of past generations is 
smaller for traits under strong selection.

Lower accuracies with truncated pedigrees could be 
due to the difficulty of determining UPG that correctly 
reflect reality for a relatively small population; UPG 
are important in traits under selection. For the con-
centration traits that were not under major selection, 
UPG may not increase the accuracy but add an esti-
mation error. However, almost all regressions increased 
with deletion of more phenotypic records (Figure 3), 
whether including UPG or not.

To investigate the effect of different origins on the ac-
curacy of evaluation, R2 were calculated separately for 
the 38 bulls with Israeli sires and the 97 bulls with for-
eign sires (Figure 4). For milk, fat, and protein, higher 
levels of truncation decreased R2 for bulls with Israeli 
sires and increased R2 for bulls of foreign sires. The 
highest R2 in the latter case were those with the least 
data (T2000). Although more data benefited animals 
that were descendants of animals with phenotypic re-
cords in the population, old data reduced the accuracy 
for bulls with foreign sires, who generally did not have 
high evaluation reliability within the Israeli population. 
In general, the accuracy of the genomic selection for 
a young animal depends on the relationship of that 
animal to the training population (Habier et al., 2010). 
In an ideal model, the addition of old data should not 
diminish the R2 for any group of young animals. Refin-
ing the model to better account for different genetic 
origins requires further study.

Regression of the deregressed evaluations of 135 geno-
typed bulls with no daughters with records in 2006, but 
with ≥20 daughters with records in 2011 on parent av-
erages computed separately by origin of the bulls’ sires 
are given in Figure 5. Results were consistent across 
truncation levels, except for T2000. For these data 
sets, regressions decreased for sons of local sires and 
increased for sons of foreign sires. Because regressions 
of unity indicate unbiased evaluations, these trends 
resulted, in nearly all cases, in less-biased regressions 
for the sons of foreign bulls and more-biased regressions 
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for the sons of local bulls. Again, deletion of historical 
data improved the evaluations only for sons of foreign 
bulls. The negative effects of inclusion of pedigree data 
for bulls with foreign sires may be due to the fact that 
bulls selected to sire sons in Israel are a highly selected 
sample of all foreign Holstein bulls.

In a study involving a simplistic simulation and mul-
tistep genomic method, Neuner et al. (2009) analyzed 
the effect of a pedigree 3 and 4 generations deep in a 
simulated population and found differences on variance 
components estimation, but no influence was observed 
on accuracy of predictions. Our study indicates that 
depth of pedigree had a very small influence over vali-
dation reliability of genomic evaluations in US Holstein 

data and hardly affected predictions for Israeli Holstein 
and PIC data.

Lower values of R2 for yield compared with percent-
age traits have been reported for a small set of 117 vali-
dation bulls in a Brown Swiss dairy population (Wig-
gans et al., 2011). However, the reliabilities increase 
when the number of genotyped animals also increases 
(VanRaden et al., 2009).

Correlations between corrected phenotypes and EBV 
or GEBV for the 2 traits in pigs are given in Figure 6. 
For all truncation levels, accuracy of evaluations for the 
genotyped animals was almost identical, with a slight 
improvement at T2003. Differences in graphs with full 
or truncated pedigrees were very small or none. Thus, 

Figure 1. Coefficients of determination (R2) (a, b) and regression (c, d) of deregressed evaluations for final score of 2,232 US Holstein geno-
typed bulls with no daughters with records in 2007, but with ≥20 daughters with records in 2011 on parent averages (�) or genomic EBV (�), 
for A2 (a, c) and Af (b, d) scenarios. A2 = including only 2 generations of ancestors; Af = including all ancestors; TR = reduced data set; T1980, 
T1985, T1990, T1995, and T2000 = threshold for exclusion of records before 1980, 1985, 1990, 1995, and 2000, respectively.
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Figure 2. Coefficients of determination (R2) of deregressed evaluations of 135 Israeli Holstein genotyped bulls with no daughters with re-
cords in 2006, but with ≥20 daughters with records in 2011 on parent averages (�), or genomic EBV for parity 1 (�), for A2 (a, c, e, g, i) and 
Af (b, d, f, h, j) scenarios for milk yield (a, b), fat yield (c, d), protein yield (e, f), fat percentage (g, h), and protein percentage (i, j). Results 
are presented for models that include unknown parent groups (UPG; ) or do not include UPG (----). A2 = including only 2 generations of 
ancestors; Af = including all ancestors; TR = reduced data set; T1990, T1995, T2000 = threshold for exclusion of records before 1990, 1995, 
and 2000, respectively.
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Figure 3. Regression of deregressed evaluations of 135 Israeli Holstein genotyped bulls with no daughters with records in 2006 but with ≥20 
daughters with records in 2011 on parent averages (�) or genomic EBV for parity 1 (�), for A2 (a, c, e, g, i) and Af (b, d, f, h, j) scenarios for 
milk yield (a, b), fat yield (c, d), protein yield (e, f), fat percentage (g, h), and protein percentage (i, j). Results are presented for models that 
include unknown parent groups (UPG; ) or do not include UPG (----). A2 = including only 2 generations of ancestors; Af = including all 
ancestors; TR = reduced data set; T1990, T1995, T2000 = threshold for exclusion of records before 1990, 1995, and 2000, respectively.
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Figure 4. Coefficients of determination (R2) of deregressed evaluations of 135 Israeli Holstein genotyped bulls with no daughters with records 
in 2006, but with ≥20 daughters with records in 2011 on parent averages (�), or genomic EBV for parity 1 (�), for A2 (a, c, e, g, i) and Af 
(b, d, f, h, j) scenarios for milk yield (a, b), fat yield (c, d), protein yield (e, f), fat percentage (g, h), and protein percentage (i, j). Results are 
presented separately for 38 bulls with Israeli sires ( ) and 97 bulls with foreign sires (----). A2 = including only 2 generations of ancestors; Af 
= including all ancestors; T1990, T1995, T2000 = threshold for exclusion of records before 1990, 1995, and 2000, respectively.
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Figure 5. Regression of deregressed evaluations of 135 Israeli Holstein genotyped bulls with no daughters with records in 2006, but with ≥20 
daughters with records in 2011 on parent averages (�), or genomic EBV for parity 1 (�), for A2 (a, c, e, g, i) and Af (b, d, f, h, j) scenarios for 
milk yield (a, b), fat yield (c, d), protein yield (e, f), fat percentage (g, h), and protein percentage (i, j). Results are presented separately for 38 
bulls with Israeli sires ( ) and 97 bulls with foreign sires (----). A2 = including only 2 generations of ancestors; Af = including all ancestors; 
TR = reduced data set; T1990, T1995, T2000 = threshold for exclusion of records before 1990, 1995, and 2000, respectively.
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more than 7 yr of historical data, or about 2 genera-
tions, did not improve the accuracy.

Computing Costs

Computing costs of genomic evaluations are shown 
in Table 3. With less data, time per round was gener-
ally smaller; discrepancies were due to inaccuracy of 
a timing routine. When the phenotypes were deleted, 
the number of iterations stayed level or increased 
when all pedigree data were included and stayed level 
or decreased when the pedigrees were reduced. When 
all pedigree data were retained, limiting the records 
to 2 generations (T1995 in US and Israeli Holsteins 
or T2003 in pigs) decreased computation time by 59% 

for US Holsteins, by 33% for Israeli Holsteins, and by 
27% for pigs. When the pedigrees were limited to 2 
generations before animals with records, the computa-
tions decreased by 70, 36, and 38%, respectively. With 
a large number of genotypes, computing time will be 
more dependent on the number of genotypes. However, 
the inverse of A22 will be more sparse with smaller 
pedigrees.

Different data sets and models used in our study helped 
us to better understand the influence of previous gen-
erations in the evaluation of young genotyped animals. 
The effect of removing old generations on predictive 
ability appears to be data-structure driven. However, 
it was possible to remove at least a few generations 
from all data sets used here, and for almost all traits, 

Figure 6. Correlations between corrected phenotypes (Yc_full) and EBV (�) or genomic EBV (�) for 1,034 genotyped pigs born in 2010 and 
2011, in A2 (a, c) and Af (b, d) scenarios for litter size (trait 1; a, b) and numbers of stillborn (trait 2; c, d). A2 = including only 2 generations 
of ancestors; Af = including all ancestors (Af); TR = reduced data set; T1991, T1994, T1997, T2000, T2003, and T2006 = threshold for exclu-
sion of records before 1991, 1994, 1997, 2000, 2003, and 2006, respectively.
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without reducing validation reliabilities and improving 
the computing performance of the evaluations. The op-
tion for data reduction will depend on the objectives 
of the evaluation. According to Jamrozik and Schaeffer 
(1991), the inclusion of all data in genetic studies is 
important if the interest is in estimating genetic trends 
over time. In contrast, if the interest is to investigate 
the selection response, the use of the last 2 (discrete) or 
4 (overlapping) generations had no significant effect in 
traditional evaluations of a simulated chicken popula-
tion (Mehrabani-Yeganeh et al., 1999). Furthermore, 
if the objective is to predict genomic breeding values 
for young genotyped animals, the addition of one extra 
generation of pedigree did not improve the prediction 
accuracies in simulated data (Neuner et al., 2009).

CONCLUSIONS

Retaining only 2 or 3 generations of phenotypic re-
cords and an extra 2 generations of pedigree records 
did not decrease the accuracy of evaluations for young 
genotyped animals and did decrease computing costs. 
When the population is small and contains a mix of lo-
cal and external animals, additional generations of phe-
notypic records can increase the accuracy for progeny 
of local animals and decrease the accuracy for progeny 
of imported animals. Analyzing realized accuracy with 
various levels of data truncation may uncover problems 
with the analysis model and lead to model refinements.
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