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  ABSTRACT 

  Methods for genomic prediction were evaluated for 
an Israeli Holstein dairy population of 713,686 cows 
and 1,305 progeny-tested bulls with genotypes. Inclu-
sion of genotypes of 343 elite cows in an evaluation 
method that considers pedigree, phenotypes, and geno-
types simultaneously was also evaluated. Two data sets 
were available: a complete data set with production 
records from 1985 through 2011, and a reduced data 
set with records after 2006 deleted. For each production 
trait, a multitrait animal model was used to compute 
traditional genetic evaluations for parities 1 through 
3 as separate traits. Evaluations were calculated for 
the reduced and complete data sets. The evaluations 
from the reduced data set were used to calculate parent 
average for validation bulls, which was the benchmark 
for comparing gain in predictive ability from genomics. 
Genomic predictions for bulls in 2006 were calculated 
using a Bayesian regression method (BayesC), genomic 
BLUP (GBLUP), single-step GBLUP (ssGBLUP), and 
weighted ssGBLUP (WssGBLUP). Predictions using 
BayesC and GBLUP were calculated either with or 
without an index that included parent average. Genom-
ic predictions that included elite cow genotypes were 
calculated using ssGBLUP and WssGBLUP. Predictive 
ability was assessed by coefficients of determination 
(R2) and regressions of predictions of 135 validation 
bulls with no daughters in 2006 on deregressed evalu-
ations of those bulls in 2011. A reduction in R2 and 
regression coefficients was observed from parities 1 
through 3. Fat and protein yields had the lowest R2

for all the methods. On average, R2 was lowest for par-
ent averages, followed by GBLUP, BayesC, ssGBLUP, 
and WssGBLUP. For some traits, R2 for direct genomic 
values from BayesC and GBLUP were lower than those 
for parent averages. Genomic estimated breeding values 
using ssGBLUP were the least biased, and this method 

appears to be a suitable tool for genomic evaluation 
of a small genotyped population, as it automatically 
accounts for parental index, allows for inclusion of fe-
male genomic information without preadjustments in 
evaluations, and uses the same model as in traditional 
evaluations. Weighted ssGBLUP has the potential for 
higher evaluation accuracy. 
  Key words:    genomic selection ,  few genotyped ani-
mals ,  single-step method ,  multitrait model 

  INTRODUCTION 

  Genomic selection has become a standard procedure 
in dairy cattle breeding because of its potential for 
increasing genetic gain through improved evaluation 
accuracy and for reducing generation interval (Hayes 
et al., 2009; VanRaden et al., 2009). Genomic selec-
tion was first introduced for US Holsteins in 2008 with 
evaluation of 5,285 progeny-tested bulls (VanRaden et 
al., 2008). The number of genotyped US Holstein bulls 
has increased by more than 10-fold, but numbers of 
genotyped animals in most other countries or of other 
breeds are substantially lower. The accuracy of ge-
nomic predictions is strongly dependent on the number 
of genotyped animals (VanRaden et al., 2009; Calus, 
2010; Daetwyler et al., 2010). Therefore, accuracies of 
genomic EBV (GEBV) from small reference popula-
tions could be as low as in traditional BLUP evalua-
tions that are based on pedigrees and performance of 
an animal or its progeny (VanRaden et al., 2009; Van 
Grevenhof et al., 2012). 

  Several methods that add genotypic information 
to pedigree and phenotypic information have been 
developed since genomic selection was first proposed 
in animal breeding (Meuwissen et al., 2001). The cur-
rent method used in dairy cattle evaluations is based 
on a multistep procedure (VanRaden, 2008; Hayes et 
al., 2009; Lund et al., 2011; Wiggans et al., 2011b). In 
this procedure, the first step involves the estimation of 
traditional breeding values. In the second step, daugh-
ter yield deviations (DYD) or deregressed evaluations 
(DD) are calculated. In the third step, direct genomic 
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values (DGV) are computed for genotyped animals 
using methods based either on estimation of SNP ef-
fects or on genomic relationships using DYD or DD as 
phenotypic observations. A fourth step can be added to 
combine DGV with parent averages (PA) by selection 
index theory (VanRaden et al., 2009) to obtain GEBV 
(GEBVi).

Generally, the amount of phenotypic information 
used to calculate DGV is smaller than the amount used 
to obtain PA, because only a subset of animals in the 
pedigree are genotyped (VanRaden et al., 2009). In this 
case, accounting for the standard sire-dam PA and the 
PA computed from the subset of genotyped ancestors 
in an index with DGV can help to improve genomic 
predictions (VanRaden et al., 2012). According to Su 
et al. (2012), the benefits from using such an index 
are dependent on high accuracies of DGV. Simpler and 
possibly less effective indices that combine only PA and 
DGV were also proposed (Guo et al., 2010).

Aguilar et al. (2010) and Christensen and Lund 
(2010) introduced a single-step approach for genomic 
evaluations called single-step genomic BLUP (ssGB-
LUP), in which phenotypes, pedigree, and genotypes 
are utilized in a single analysis with GEBV as a direct 
output. In ssGBLUP, the pedigree-based relationship 
matrix (A) is replaced by a matrix (H) that integrates 
A and a genomic-based relationship matrix (G). All 
genotyped animals can be considered, and the inflation 
and bias of genomic evaluation can be minimized with 
small modifications to H (Aguilar et al., 2010; Tsuruta 
et al., 2011; Vitezica et al., 2011). The primary advan-
tages of ssGBLUP are simplicity and lack of approxima-
tions. For example, Gray et al. (2012) compared several 
methods for genomic prediction of milk flow traits. For 
all traits, ssGBLUP accuracy was the highest.

Genotypes can be obtained for both bulls and cows. 
The number of progeny-tested bulls is limited, and elite 
cows used as bull dams can provide additional informa-
tion. Use of genotypes of females in a multistep method 
initially decreased the accuracy of prediction for US 
Holstein bulls, mainly because females were selected for 
genotyping based upon their high genetic merit, which 
may be biased due to preferential treatment (Wiggans 
et al., 2011a); however, this decrease in accuracy could 
be reversed heuristically. The use of female genotypes 
in ssGBLUP increased prediction accuracy for both 
males and females without heuristics and modifications 
to the model (Tsuruta et al., 2013).

Production traits can be analyzed using repeatability 
or multitrait models. Weller and Ezra (2004) showed 
that a multitrait model, which assumes that each par-
ity is a different trait, more accurately ranks animals 
of different ages than a repeatability model. In a multi-
step genomic evaluation, the BLUP evaluation may use 

a multitrait model, but the step for genomic prediction 
is usually single-trait because of computing limitations 
(Calus and Veerkamp, 2011). The ssGBLUP method 
allows for any type of BLUP model, including a multi-
trait model.

In general, methods based on genomic relationships 
assume the same weight per SNP. Such an assumption 
could undermine accuracy when selected SNP explain 
a large fraction of the genetic variance. Wang et al. 
(2012) modified ssGBLUP for genome-wide associa-
tion to obtain SNP weights and incorporate them in a 
weighted ssGBLUP (WssGBLUP).

The primary objective of this study was to evaluate 
several methods of genomic prediction using a multi-
trait animal model for a population with a relatively 
small number of genotyped animals. An additional 
objective was to evaluate the effect on evaluation ac-
curacy of adding female genotypes to ssGBLUP and 
WssGBLUP analyses.

MATERIALS AND METHODS

Data

Two Israeli Holstein data sets were analyzed. The 
complete data set contained 305-d milk, fat, protein, fat 
percentage, and protein percentage records for 713,686 
cows with records for parity 1, 503,827 cows for parity 
2, and 326,317 cows for parity 3. The cows calved from 
1985 through 2011. The reduced data set included only 
production records through 2006 for 563,870 cows with 
records for parity 1, 391,977 cows for parity 2, and 
249,954 cows for parity 3. These records were used to 
calculate genomic predictions using single-step genomic 
methods, traditional predictions, and DD. To estimate 
DGV, DD were used as phenotypic records for geno-
typed sires in multistep genomic methods.

A total of 1,305 bulls and 343 elite cows were geno-
typed for the Illumina BovineSNP50 BeadChip (Illumi-
na Inc., San Diego, CA), which includes approximately 
54,000 markers. Quality control retained SNP with call 
rates >0.9 for both SNP and animals genotypes, minor 
allele frequency >0.05, and departure from Hardy-
Weinberg equilibrium (difference between expected and 
observed frequency) <0.15. Parent–progeny pairs were 
tested for conflicts. Single nucleotide polymorphisms 
with unknown position or located on sex chromosomes 
were not considered in the analyses. After the qual-
ity control, 30,359 SNP remained in the genotype file. 
Numbers of genotyped bulls and elite cows by birth year 
are shown in Table 1. Elite cows were the top 2% for the 
Israeli breeding index at the time they were selected for 
genotyping. Effects of SNP were estimated from a set 
of training animals using multistep genomic methods, 
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and then predictions based on genomic information 
were tested with a set of validation bulls. Validation 
bulls included 135 genotyped bulls born from 2002 to 
2005 and with no daughter records in the reduced data 
set (2006) but ≥20 daughters in the complete data set 
(2011). For multistep evaluations, training bulls were 
required to have DD in the reduced data set (732 
bulls). For single-step evaluation, the data set included 
all 1,305 genotyped bulls (the 732 multistep training 
bulls, 34 bulls without DD in the reduced data set, 82 
bulls born from 2002 to 2005, 135 validation bulls, and 
322 young bulls born since 2006), but only production 
records up to 2006. To evaluate the effect of including 
cow genotypes in single-step methods, genotypes of 343 
cows were included, which was straightforward, because 
the single-step method uses observed phenotypes rather 
than pseudo-phenotypes.

Model and Analysis

The model adopted in Israel for evaluation of pro-
duction traits in Holstein is a multitrait animal model 
(Weller and Ezra, 2004). This model was used to 
compute traditional genetic evaluation for parities 1 
through 3 as separate traits. The EBV for individual 
parities were combined into a single total evaluation 
(total breeding value, BVT) with the index of Weller 
and Ezra (2004):

BVT = (EBV1 + 0.73EBV2 + 0.51EBV3)/2.24,

where EBV1, EBV2, and EBV3 are EBV for parities 1, 
2, and 3, respectively. Traditional evaluations were cal-
culated for the complete and reduced data sets. Using 
EBV and approximate accuracies for each data set, DD 

were calculated as deregressed evaluations (VanRaden 
et al., 2009) as follows:

 DD
EBV PA

R
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−
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where the fraction is the deregressed Mendelian sam-
pling; i is the ith parity; and Ri is the deregression 
factor obtained as in Wiggans et al. (2012):
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where DEanimal is equivalent daughter contributions 
from the animal and its progeny, and DEPA is equiva-
lent daughter contributions from parent averages.

Four different methods were used to calculate genomic 
predictions. The first was genomic BLUP (GBLUP), 
which used a G matrix as constructed by VanRaden 
(2008):
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where M is a matrix of SNP genotypes for each animal, 
P is a matrix of 2 times the allele frequency of the 
second allele p at locus j (pj). The denominator is a 
scaling factor for G.

The second method applied was a Bayesian regres-
sion model known as BayesC (Kizilkaya et al., 2010). 
This method assumes that a fixed amount π of SNP 
markers have no effect, whereas 1 − π have effects 
sampled from a normal distribution with an a priori 

Table 1. Numbers of genotyped Israeli Holsteins by animal birth year 

Birth year

Bulls

Elite cows1

Training

Validation YoungAll
With daughter records 

in 2006 or earlier

1975–1979 10 10 — — —
1980–1984 72 72 — — —
1985–1989 162 162 — — —
1990–1994 206 205 — — —
1995–1999 216 208 — — —
2000–1901 100 75 — — 12
2002 41 — 11 — 7
2003 7 — 44 — 12
2004 18 — 48 — 32
2005 16 — 32 — 60
2006–2012 — — — 322 220
All 848 732 135 322 343
1Top 2% for the Israeli breeding index at the time of selection for genotyping.
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variance assumed to be scaled in accordance with an 
inverse χ2 distribution.

Both GBLUP and BayesC used DD in the reduced 
data set as phenotypic information. As the bulls in the 
training population had different number of daughters, 
DD was weighted by its reliability (Rel) expressed as 
equivalent daughter contributions; DE, the weighting 
factor for the DD, was obtained as in VanRaden and 
Wiggans (1991):

 DE
Rel of DD

Rel of DD
=
−1

. 

Because the number of genotyped animals was small, 
the quality of predictions by both methods could be im-
proved by blending DGV with information from BLUP 
analyses (VanRaden et al., 2009). The index used was 
based on selection index theory with modifications: 
GEBVi = bDGVDGV + bPAPA; the weights (b) for DGV 
and PA were calculated as in Guo et al. (2010).

The third method was ssGBLUP, in which pheno-
types, pedigrees, and genotypes are blended in a single 
analysis (Aguilar et al., 2010; Christensen and Lund, 
2010). This method is similar to traditional BLUP in 
the way that phenotypes and pedigree-based relation-
ships are combined in the mixed model equations, all 
recorded animals can be considered in the analysis, 
and pseudo-phenotypes (i.e., deregressed evaluations) 
are not needed because bulls are related to daughters’ 
production through A. The inverse of the modified re-
lationship matrix H was

 H A
G A A

− −
− −= +
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where τ is a scaling factor for G−1 and ω is a scaling 
factor for A22

1− , the inverse of the pedigree-based nu-
merator relationship matrix for genotyped animals. 
Changes in both weights were investigated by Misztal 
et al. (2010) for final score for US Holsteins. Changes in 
τ had little effect on accuracy and prediction bias, but 
ω < 1 helped to reduce the inflation of GEBV. A τ of 
1.0 and a ω of 0.7 were chosen as indicated in Tsuruta 
et al. (2011). Weights for G (0.95) and A22 (0.05) can 
avoid singularity problems and can slightly improve 
predictions (VanRaden, 2008). The constant α is the 
difference between average values of A22 and G, and it 
accounts for the fact that genotyped animals are more 
related through A than G is able to reflect (Vitezica et 
al., 2011). Although the choice of α greatly influenced 
the biases of GEBV in broiler chicken (Chen et al., 
2011), it seemed to have minimal effect in dairy cattle 
(results not shown).

The fourth method was WssGBLUP (Wang et al., 
2012). In this procedure, GEBV was converted to SNP 
solutions and used to create estimates of each SNP 
variance. Subsequently, the variances were used to cre-
ate weighted G, which is applied in ssGBLUP. The pro-
cedure can be iterative, although most improvements 
in accuracy are obtained after one round of iteration 
(Wang et al., 2012). A single round was applied for 
this study, except as indicated otherwise. In multitrait 
models using WssGBLUP, G needs to be identical for 
all the traits. For this study, the weight for G was de-
rived separately for each parity and trait. Subsequent 
analyses used G with average weight across parities. 
The GEBV were also computed by (W)ssGBLUP with 
genotypes of elite cows included in the analysis.

GEBV (DGV) Validation

The GEBV validation test (Mäntysaari et al., 2010) 
was performed to determine the predictive ability of 
the 4 methods for each parity and BVT for all produc-
tion traits. The deregressed evaluations from complete 
data set were used as the expected future progeny per-
formance of validation bulls to assess predictive ability 
based on the reduced data set. The EBV from the re-
duced data set was used to calculate PA for validation 
bulls, which was the benchmark used to compare the 
gain in predictive ability due to genomics. The follow-
ing weighted regression model was applied:

DDcomplete = μ + δXreduced + e,

where DDcomplete is DD of the validation bulls computed 
based on the complete data set; μ is the mean; δ is 
a regression coefficient; Xreduced is a bull’s PA, DGV, 
or GEBV based on the reduced data set; and e is the 
residual. The linear regression was weighted by the 
reliability of DDcomplete. Ideally, values of δ close to 1 
indicate that early evaluations are successful in predict-
ing the actual magnitude of differences among animals; 
therefore, for values of δ closer to 1, Xreduced is an unbi-
ased prediction of DDcomplete. Deviations of ±15% from 
unity are generally acceptable (Tsuruta et al., 2011). 
The coefficient of determination (R2) was used to assess 
the validation reliability of evaluation models.

Computation

The GS3 software of Legarra et al. (2013) was used 
to compute GBLUP DGV. The software estimates 
DGV for a subset of training animals and also the 
SNP effects, which are then used to obtain DGV for 
validation animals in a separate computation. The con-
vergence criterion was set to 10−8. Analyses involving 
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the BayesC method were performed using the GenSel 
software of Fernando and Garrick (2009); assumptions 
were that 95% of SNP had no effect and that priors for 
variance of SNP and residual effects followed a scaled 
inverse χ2 distribution with 4 and 10 df, respectively. 
A total of 50,000 samples were generated with a burn-
in of 5,000. Estimates of SNP effects and DGV were 
obtained from the posterior distribution of the 45,000 
remaining samples. The convergence of Markov chains 
was analyzed through diagnostic tests available in the 
R coda package (Plummer et al., 2013). Traditional 
evaluations with ssGBLUP were computed using a 
modified version of BLUP90IOD (Tsuruta et al., 2001; 
Aguilar et al., 2011a). The convergence criterion was 
set to10−14 for all production traits.

RESULTS AND DISCUSSION

Predictive Ability with Different Genomic Methods

Initially, only genotypes from bulls were considered. 
Average reliabilities (SE) of PA in 2006 among traits 
for the 135 validation bulls were 0.36 (0.006), 0.34 
(0.006), and 0.33 (0.006), for first, second, and third 
parities, respectively. For DD in 2011, average reliabili-
ties were 0.90 (0.004), 0.87 (0.005), and 0.85 (0.005), 
respectively. The decrease in reliability of DD in 2011 
with increase in parity was due to a smaller number of 
daughters with records in later parities. Correlations 
among PA as of 2006, GEBVi for BayesC and GBLUP, 
and GEBV for ssGBLUP based on the reduced data 
set for the 135 validation bulls are given in Table 2. As 
genomic predictions included PA, all the correlations 
were inflated by an autocorrelation due to the PA. Cor-

relations between PA and BayesC and GBLUP GEBVi 
were all high for all parities and production traits. Cor-
responding correlations of PA with ssGBLUP predic-
tions were generally the same or lower for all parities 
compared with correlations for BayesC predictions, 
except for fat percentage. Compared with values for 
GBLUP predictions, correlations for ssGBLUP were 
higher in only a few cases. In general, BayesC was the 
method that had the greatest correlation with PA in 
2006. For all traits and parities, correlations between 
the methods based on pseudo-phenotypes (BayesC and 
GBLUP) were higher than correlations between those 
methods and ssGBLUP. Lower correlations between 
single-step and other methods were expected, because 
the single-step method also incorporates information 
on nongenotyped animals that are related to genotyped 
animals and contribute phenotypes. Koivula et al. 
(2012) obtained low correlations between GBLUP and 
ssGBLUP predictions for a larger population of Nordic 
Red dairy cattle.

Table 3 shows heritabilities and R2 for PA and ge-
nomic predictions from BayesC and GBLUP (DGV 
and GEBVi) and from (W)ssGBLUP based on 2006 
data for validation bulls. For all traits, R2 generally 
decreased as parity increased, probably because of 
smaller heritabilities and fewer animals with records 
in later parities. Aguilar et al. (2011b) reported a 
reduction in R2 across parities for conception rate in 
Holsteins. Luan et al. (2009) showed greater accuracy 
and lower bias for traits with greater heritabilities in 
Norwegian Red Cattle. For all parities, R2 were much 
smaller for fat and protein yields than for the other 
traits. Animals have been intensely selected for those 2 
traits, which could reduce R2. According to VanRaden 

Table 2. Correlations between genomic predictions1 in 2006 obtained from different evaluation methods2 and parent average (PA) in 2006 by 
parity for 135 Israeli Holstein validation bulls 

Trait

Parity 1 Parity 2 Parity 3

BayesC GBLUP ssGBLUP BayesC GBLUP ssGBLUP BayesC GBLUP ssGBLUP

Milk yield PA2006 0.89 0.88 0.84 0.87 0.85 0.83 0.88 0.87 0.80
BayesC  0.99 0.88  0.99 0.88  0.99 0.87
GBLUP   0.87   0.87   0.86

Fat yield PA2006 0.93 0.89 0.85 0.90 0.87 0.84 0.91 0.88 0.89
BayesC  0.98 0.84  0.98 0.82  0.98 0.87
GBLUP   0.82   0.81   0.86

Protein yield PA2006 0.84 0.81 0.77 0.81 0.76 0.73 0.80 0.76 0.69
BayesC  0.98 0.78  0.98 0.74  0.98 0.70
GBLUP   0.77   0.73   0.69

Fat percentage PA2006 0.92 0.91 0.93 0.91 0.90 0.92 0.91 0.91 0.92
BayesC  0.98 0.95  0.98 0.94  0.98 0.95
GBLUP   0.94   0.94   0.95

Protein percentage PA2006 0.89 0.86 0.89 0.88 0.86 0.86 0.89 0.85 0.86
BayesC  0.97 0.93  0.97 0.93  0.98 0.93
GBLUP   0.90   0.91   0.92

1Genomic predictions for GBLUP and BayesC are genomic EBV obtained by an index that combines PA and direct genomic value.
2BayesC = Bayesian regression model; GBLUP = genomic BLUP; and ssGBLUP = single-step GBLUP.
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et al. (2009) and Bijma (2012), the realized reliability 
could be much smaller than the published reliability 
if the trait is directly selected. The R2 for component 
percentages were higher, even though those traits were 
derived from ratios of components to milk. VanRaden 
et al. (2009) found that R2 for PA was 0.10 less for 
fat yield compared with fat percentage; the difference 
was 0.19 when genomic information was included. In a 
Brown Swiss population with a validation set as small 
as in our study, Wiggans et al. (2011b) showed R2 of 
PA for fat (0.075) and protein (0.062) yield around 4 
times smaller than for those for fat and protein per-
centages. Similar trends were observed in our study. 
VanRaden et al. (2009) showed that R2 values increase 
as the number of genotyped individuals increases. 
When comparing US, New Zealand, and Australian 
genomic predictions, Hayes et al. (2009) found higher 
R2 for US and New Zealand, because of their greater 
numbers of genotypes.

Predictions based on genomic information are ex-
pected to have higher R2 than traditional evaluations. 
However, R2 for BayesC DGV were smaller than R2 for 
PA for fat percentage in the second parity and were the 
same for fat percentage in the first and third parities 
and milk in third parity. The GBLUP DGV had smaller 
R2 than PA for milk in second parity, fat percentage in 
all parities, and protein percentage in the first 2 pari-

ties. For all traits, BayesC DGV had higher or same 
R2 compared with GBLUP DGV, except for protein 
yield in third parity. According to a simulation study 
by Meuwissen (2009), GBLUP requires more records 
to reach a high accuracy than does a Bayesian method 
(BayesB), and when the number of records is small and 
the marker density is high, Bayesian methods seem su-
perior to GBLUP. For GEBVi, R

2 was higher than PA 
R2 for all traits except fat percentage for the GBLUP 
method in all parities. In a study with simulated data, 
Guo et al. (2010) obtained better predictive ability with 
a nonlinear Bayesian model compared with GBLUP us-
ing a simplified index that did not account for PA from 
the subset of genotyped animals. They also reported 
low PA reliabilities, because of the small number of 
animals as well as small gains in genomic predictions by 
including PA information. When applying an index for 
predicted bulls that combines DGV, published PA, and 
PA from the subset of genotyped animals, VanRaden et 
al. (2012) found that R2 decreased slightly when weight 
was removed from DGV and transferred either to PA 
or to PA from the genotyped subset, and that bias of 
prediction was reduced.

Blending PA information with DGV had a positive ef-
fect on R2 and improved some poor genomic predictions 
relative to traditional predictions. For all parities, R2 
were higher for GEBVi compared with DGV, except for 

Table 3. Heritabilities for production traits by parity and total breeding value (BVT)1 index, and coefficients of determination (R2) for 
regressions of deregressed evaluations in 2011 on traditional parent average (PA) and genomic predictions2 in 2006 from different evaluation 
methods3 for 135 Israeli Holstein validation bulls 

Trait Parity h2

R2

PA

BayesC GBLUP
ssGBLUP 

GEBV
WssGBLUP 

GEBVDGV GEBVi DGV  GEBVi

Milk yield 1 0.39 0.18  0.23  0.25  0.20  0.24  0.24  0.23
2 0.29 0.13  0.14  0.17  0.12  0.16  0.15  0.16
3 0.27 0.11  0.11  0.15  0.11  0.13  0.14  0.14
BVT — 0.14  0.17  0.20  0.15  0.18  0.18  0.18

Fat yield 1 0.42 0.07  0.15  0.12  0.11  0.11  0.14  0.11
 2 0.38 0.06  0.12  0.11  0.11  0.11  0.12  0.09

3 0.34 0.06  0.12  0.10  0.11  0.10  0.09  0.07
BVT — 0.06  0.13  0.11  0.11  0.10  0.11  0.09

Protein yield 1 0.34 0.07  0.21  0.19  0.19  0.18  0.20  0.20
2 0.29 0.01  0.09  0.07  0.07  0.06  0.09  0.10
3 0.27 0.01  0.07  0.05  0.08  0.06  0.09  0.09
BVT — 0.02  0.13  0.10  0.11  0.09  0.13  0.13

Fat percentage 1 0.42 0.37  0.37  0.43  0.26  0.36  0.40  0.43
2 0.38 0.35  0.34  0.41  0.26  0.34  0.38  0.41
3 0.34 0.33  0.33  0.39  0.25  0.32  0.36  0.39
BVT — 0.36  0.35  0.41  0.26  0.35  0.39  0.42

Protein percentage 1 0.34 0.33  0.40  0.44  0.32  0.37  0.41  0.46
2 0.29 0.30  0.36  0.40  0.28  0.34  0.39  0.44
3 0.27 0.27  0.33  0.38  0.27  0.33  0.37  0.42
BVT — 0.31  0.37  0.42  0.31  0.36  0.40  0.44

1Calculated from an index that combines breeding values for parities 1, 2, and 3 from a multitrait evaluation.
2DGV = direct genomic value; GEBV = genomic EBV; and GEBVi = GEBV calculated from an index that combines PA and DGV.
3BayesC = Bayesian regression model; GBLUP = genomic BLUP; ssGBLUP = single-step GBLUP; and WssGBLUP = weighted ssGBLUP.
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fat and protein yield. The small number of genotyped 
animals in addition to the intense selection on those 
traits, which can cause very low R2 for PA, most likely 
led to smaller R2 after blending. The R2 obtained for 
genomic predictions with ssGBLUP and WssGBLUP 
were always higher than PA R2 for all parities and all 
traits. Comparing GEBV from ssGBLUP and GEBVi 
from BayesC in the first parity, BayesC GEBVi for 
milk yield was 0.01 higher than R2 of ssGBLUP. The 
BayesC GEBVi R

2 was 0.03 higher than the ssGBLUP 
R2 in first parity for fat percentage and protein per-
centage. However, including weights for SNP (WssGB-
LUP) resulted in R2 values for percentage traits equal 
or higher than the ssGBLUP values. Weighting SNP 
resulted in increased R2 values for milk and protein 
yield for parity 2. On average, ssGBLUP performed 
better than BayesC DGV, GBLUP DGV and GEBVi, 
but had R2 0.01 lower than BayesC for GEBVi. Gao 
et al. (2012) found that the application of ssGBLUP 
increased validation reliability and reduced bias for 16 
traits of Nordic Holsteins when compared with GBLUP 
in a validation population 10 times larger than in the 
present study. The R2 for WssGBLUP GEBV averaged 
0.01 and 0.04 higher than R2 for BayesC and GBLUP 
GEBVi, respectively, and 0.02 and 0.07 higher than the 
corresponding DGV. The advantage of WssGBLUP 
was greater for percentage traits, mainly because this 
method gives more weight to SNP with effects on the 
trait analyzed. Perhaps the difference between (W)

ssGBLUP and other methods would be higher if more 
animals were genotyped.

For the BVT index that combines all parities in a 
single total evaluation, DGV from BayesC had smaller 
R2 than did PA for fat percentage, and DGV from GB-
LUP had smaller R2 than did PA for both percentage 
traits. Fat percentage was the only trait with GBLUP 
GEBVi R

2 smaller than the PA R2. The average BVT 
R2 for ssGBLUP GEBV was 0.01 smaller than R2 for 
BayesC GEBVi and 0.03 higher than R2 for GBLUP 
GEBVi, and 0.01 and 0.05 higher than corresponding 
DGV R2. In all cases, WssGBLUP GEBV R2 averaged 
0.01 higher than ssGBLUP R2.

Regression coefficients for all methods are in Table 
4. The coefficients were within ±15% of the optimal 
value (δ = 1.00) for parity 1 for milk yield for all evalu-
ation methods except for WssGBLUP GEBV, for fat 
percentage except for ssGBLUP GEBV, and for protein 
percentage for all methods. Coefficients for BayesC 
DGV and ssGBLUP GEBV for protein yield were also 
within the acceptable range. All other regression coef-
ficients for milk, fat, and protein yields were outside 
of the acceptable range for all methods, especially for 
later parities. Almost all regression coefficients for fat 
percentage were in the acceptable range except for ssG-
BLUP GEBV for parity 1 (δ = 1.18) and parity 2 (δ = 
1.19). However, including weights in ssGBLUP helped 
to reduce prediction bias for component percentages to 
within the acceptable range for all parities.

Table 4. Coefficients for regression of deregressed evaluations in 2011 on traditional parent average (PA) and genomic predictions1 in 2006 from 
different evaluation methods2 for production traits by parity and total breeding value (BVT)3 index for 135 Israeli Holstein validation bulls 

Trait Parity PA

BayesC GBLUP
ssGBLUP 

GEBV
WssGBLUP 

GEBVDGV GEBVi DGV GEBVi

Milk yield 1 0.86 0.93 0.90 0.86 0.86 0.98 0.83
2 0.75 0.77 0.76 0.68 0.71 0.84 0.72
3 0.67 0.70 0.68 0.62 0.64 0.78 0.65
BVT 0.77 0.84 0.81 0.76 0.77 0.89 0.75

Fat yield 1 0.47 0.77 0.59 0.61 0.54 0.68 0.47
 2 0.47 0.69 0.56 0.58 0.53 0.63 0.42

3 0.45 0.68 0.54 0.58 0.52 0.57 0.39
BVT 0.44 0.72 0.55 0.59 0.52 0.62 0.42

Protein yield 1 0.59 0.86 0.78 0.77 0.73 0.86 0.69
2 0.27 0.65 0.50 0.50 0.44 0.69 0.53
3 0.24 0.59 0.44 0.54 0.45 0.58 0.49
BVT 0.36 0.74 0.60 0.63 0.56 0.73 0.58

Fat percentage 1 1.10 1.08 1.10 0.90 0.99 1.18 1.10
2 1.13 1.08 1.10 0.91 0.99 1.19 1.09
3 1.09 1.05 1.07 0.90 0.98 1.14 1.07
BVT 1.11 1.09 1.10 0.92 1.00 1.18 1.09

Protein percentage 1 0.97 1.00 0.99 0.85 0.88 1.04 0.98
2 0.95 0.99 0.97 0.82 0.87 1.04 0.97
3 0.91 0.97 0.95 0.81 0.85 1.02 0.96
BVT 0.96 1.00 0.98 0.86 0.89 1.04 0.97

1DGV = direct genomic value; GEBV = genomic EBV; and GEBVi = GEBV calculated from an index that combines PA and DGV.
2BayesC = Bayesian regression model; GBLUP = genomic BLUP; ssGBLUP = single-step GBLUP; and WssGBLUP = weighted ssGBLUP.
3Calculated from an index that combines breeding values for parities 1, 2, and 3 from a multitrait evaluation.
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Predictive Ability with Cows Included  
in a Single-Step Method

Figure 1 shows coefficients of determination (R2 × 
100) for PA and genomic predictions for evaluations 
both excluding and including cows’ genotypes. The 
values are from ssGBLUP and the first 2 iterations 

of WssGBLUP. For most traits and parities, R2 for 
WssGBLUP GEBV were higher after the first round of 
iteration than after the second round. This trend was 
very similar whether genotypes for cows were included 
or not. Consequently, first-round weights were chosen 
as the most appropriate weights for this study. In each 
round of iteration for WssGBLUP, the weights for SNP 

Figure 1. Reliabilities (R2 × 100) for parent average (PA) and genomic predictions from single-step genomic BLUP (ssGBLUP), and 2 itera-
tions of weighted ssGBLUP (WssGBLUP1 and WssGBLUP2) for milk yield (	), fat yield (
), protein yield (�), fat percentage (�), and protein 
percentage (Δ) for parity 1 (a, b), parity 2 (c, d), and parity 3 (e, f) when only 1,305 genotyped bulls were considered in the training population 
(a, c, e) and when 343 genotyped elite cows were also included in the training population (b, d, f) for evaluations of 135 Israeli Holstein valida-
tion bulls; elite cows were the top 2% for the Israeli breeding index at the time of selection for genotyping.
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with large effects are increased, whereas those with 
small effects are decreased. Continuous iteration leads to 
SNP weights near zero for SNP with very small effects. 
Sun et al. (2012) evaluated weighted GBLUP with a 
formula emulating the expectation-maximization (EM) 
algorithm and found that prediction accuracies reached 
a plateau after a few iterations. Use of a similar formula 
in this study did not increase the accuracy. Eventually, 
WssGBLUP may benefit from additional refinements.

The R2 and regression coefficients for ssGBLUP and 
first round of WssGBLUP with both bulls and cows in 
the training population are in Table 5. The additional 
use of cow genotypes generally had a small effect on 
regression coefficients, but the inclusion of weights for 
SNP reduced regressions regardless of the use of cow 
genotypes. This resulted in greater prediction bias for 
the yield traits, for which all regressions were less than 
unity, and lower prediction bias for the percentage 
traits, for which regressions were close to unity. Almost 
no prediction bias was observed for protein percentage 
for all parities or for BVT when cows were included 
in the training population for WssGBLUP evaluations. 
The inclusion of genotyped cows generally had a small 
but positive effect on R2 (increases of 0.01 for yield 
traits and 0.02 for component percentages).

A decrease in R2 for GEBV was observed for all traits 
as parity increased, regardless of whether genotypes of 
cows were included in the training population (Tables 4 

and 5), except that R2 for ssGBLUP GEBV for protein 
yield were the same for parities 2 and 3. A greater 
difference between R2 for ssGBLUP and WssGBLUP 
GEBV was observed for component percentages for all 
parities and also for BVT compared with yield, again 
regardless of the inclusion of cow genotypes. Overall, 
cow evaluations have lower accuracy compared with 
bull evaluations, but genomic evaluations of geno-
typed cows are required by the industry (Wiggans et 
al., 2011b). Reliability gains from their inclusion are 
expected to be minimal because of their low accuracy 
(Misztal et al., 2013).

In the present study, the single-step method had 
an advantage over multistep methods mainly because 
single-step uses phenotypes rather than pseudo-pheno-
types and accounts for the entire population structure 
to estimate GEBV. This method is also able to ac-
count for preselection on genotyped animals, because 
the inclusion of genotypes on elite cows did not erode 
the predictive ability of future data of candidate bulls. 
The reasons for changing to single-step methodology 
for routine evaluation are reduction of bias due to pre-
selection and simplicity (Ducrocq and Legarra, 2011).

Although a multiparity model was applied for tra-
ditional and single-step evaluations, which accounted 
for incomplete genetic correlations among parities, 
decreases in R2 and increases in prediction bias were 
observed over parities, due to the reduction in number 

Table 5. Coefficients of determination (R2) and coefficients of regression (δ) for deregressed evaluations in 2011 
on genomic EBV in 2006 from single-step genomic BLUP (ssGBLUP) and weighted ssGBLUP (WssGBLUP) 
with genotypes for 1,305 bulls and 343 elite1 cows included for production traits by parity and total breeding 
value (BVT)2 index for 135 Israeli Holstein validation bulls 

Trait Parity

R2 δ

ssGBLUP WssGBLUP ssGBLUP WssGBLUP

Milk yield 1 0.25 0.23 0.98 0.81
2 0.16 0.16 0.84 0.72
3 0.14 0.14 0.77 0.66
BVT 0.19 0.19 0.89 0.74

Fat yield 1 0.15 0.13 0.68 0.49
2 0.12 0.10 0.63 0.43
3 0.09 0.07 0.54 0.21
BVT 0.12 0.12 0.62 0.42

Protein yield 1 0.20 0.18 0.84 0.67
2 0.09 0.10 0.67 0.51
3 0.09 0.08 0.59 0.48
BVT 0.13 0.12 0.72 0.55

Fat percentage 1 0.42 0.45 1.23 1.12
2 0.40 0.43 1.22 1.11
3 0.37 0.41 1.17 1.10
BVT 0.40 0.43 1.21 1.12

Protein percentage 1 0.43 0.47 1.06 1.00
2 0.40 0.45 1.05 0.99
3 0.38 0.43 1.04 0.99
BVT 0.41 0.46 1.05 0.99

1Top 2% for the Israeli breeding index at the time of selection for genotyping.
2Calculated from an index that combines breeding values for parities 1, 2, and 3 from a multitrait evaluation.
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of daughters with increase in parity and the resulting 
lower reliability of deregressed evaluations for candidate 
bulls. Lower predictive ability in single-step methods 
could be observed over parities if a single-trait or a 
repeatability model were used. In the same way, inferior 
predictivity of multistep methods might be observed if 
deregressed evaluations from a single-trait model were 
used. However, this topic remains to be addressed in 
additional studies.

CONCLUSIONS

Estimating accurate genomic predictions in popu-
lations with small number of genotyped animals is 
problematic for highly selected traits. The DGV from 
multistep methods based on pseudo-phenotypes may be 
less accurate than PA, and an optimal index is needed 
to improve accuracies over PA. On average, the most 
accurate yet simplest method is ssGBLUP, where com-
puting of pseudo-phenotypes or an index is not needed 
and the same model as in traditional evaluations can 
be used. Additional gain in validation reliability can 
also be achieved by optimizing weights for SNP; how-
ever, weights must be computed separately for each 
trait. Addition of genotypes of elite cows in ssGBLUP 
is straightforward and has a generally positive, albeit 
small, effect.
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