ENFERMEDADES DE TOMATE
(Lycopersicum esculentum Mill.)
EN INVERNADERO EN LAS ZONAS
DE SALTO Y BELLA UNIÓN

Autor: Roberto Bernal*
Título: ENFERMEDADES DE TOMATE (Lycopersicum esculentum Mill.)
EN INVERNADERO EN LAS ZONAS DE SALTO Y BELLA UNIÓN

Autor: Roberto Bernal

Serie Técnica N° 181

©2010, INIA

Editado por la Unidad de Comunicación y Transferencia de Tecnología de INIA
Andes 1365, Piso 12. Montevideo - Uruguay
http://www.inia.org.uy

Quedan reservados todos los derechos de la presente edición. Esta publicación no se podrá reproducir total o parcialmente sin expreso consentimiento del INIA.
Instituto Nacional de Investigación Agropecuaria

Integración de la Junta Directiva

Ing. Agr., Dr. Dan Piestun - Presidente
Ing. Agr., Dr. Mario García - Vicepresidente

Ing. Agr. José Bonica
Dr. Alvaro Bentancur

Ing. Agr., MSc. Rodolfo M. Irigoyen
Ing. Agr. Mario Costa
CONTENIDO

INTRODUCCIÓN ... 1

CONSIDERACIONES GENERALES .. 2
 Cobertura de los invernaderos .. 2
 Ventilación de los invernaderos .. 3
 Importancia del déficit de presión de vapor y el punto de rocío 3
 Algunos aspectos que predisponen a las enfermedades ... 4
 Prevención, manejo y control de enfermedades .. 5
 Hongos ... 5
 Bacterias .. 6
 Virus .. 6
 Viroides ... 7
 Mycoplasmas ... 8
 Nematodes .. 8
 Generalidades sobre el ciclo de vida de los nematodos ... 8
 Tácticas de manejo integrado .. 9

ENFERMEDADES CAUSADAS POR HONGOS ... 10
 Mancha gris de las hojas .. 10
 Algunos aspectos del ciclo de la enfermedad y su epidemiología 11
 Moho de la hoja ... 11
 Mancha de la hoja .. 12
 Moho gris .. 13
 Tizón temprano .. 16
 Tizón tardío ... 17
 Pudrición de frutas y raíces ... 17
 Marchitamiento ... 19
 Moho blanco ... 19
 Mildiu pulverulento .. 20
 Pudrición de raíces corchosas de las raíces .. 21
 Marchitamiento .. 21
 Pudrición de las raíces y corona ... 22

ENFERMEDADES CAUSADAS POR BACTERIAS ... 23
 Cancro bacteriano ... 23
 Marchitamiento bacteriano ... 24
 Pudrición bacteriana del tallo .. 25
 Necrosis de la médula .. 26
 Mancha bacteriana ... 27
 Pequeñas manchas bacterianas ... 28

ENFERMEDADES PRODUCIDAS POR VIRUS ... 29
 Peste negra del tomate .. 29
 Virus del mosaico del pepino ... 31
 Virus del mosaico del tomate .. 31

BEGOMOVIRUS ... 32
 Ing. Agr. MSc. Diego Maeso, Ing. Agr. MSc Roberto Bernal
 Virus del rizado amarillo del tomate ... 32
Página

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMATODOS</td>
<td>34</td>
</tr>
<tr>
<td>Nematodos formadores de nódulos en la raíz</td>
<td>34</td>
</tr>
<tr>
<td>Diagnóstico de campo y muestreo</td>
<td>38</td>
</tr>
<tr>
<td>Diagnóstico con plantas establecidas</td>
<td>38</td>
</tr>
<tr>
<td>DESÓRDENES FISIOLÓGICOS DE LA FRUTA</td>
<td>38</td>
</tr>
<tr>
<td>Ing. Agr. Héctor Genta</td>
<td>38</td>
</tr>
<tr>
<td>Podredumbre apical</td>
<td>38</td>
</tr>
<tr>
<td>Pared gris. Madurez despareja de la fruta</td>
<td>39</td>
</tr>
<tr>
<td>Rajado de la fruta</td>
<td>40</td>
</tr>
<tr>
<td>Cara de gato</td>
<td>41</td>
</tr>
<tr>
<td>Quemado de sol</td>
<td>42</td>
</tr>
<tr>
<td>Fruta hueca</td>
<td>43</td>
</tr>
<tr>
<td>Tejido blanco interno</td>
<td>43</td>
</tr>
<tr>
<td>Deficiencia de magnesio</td>
<td>44</td>
</tr>
<tr>
<td>Deficiencia de boro</td>
<td>44</td>
</tr>
<tr>
<td>Exceso de nitrógeno</td>
<td>45</td>
</tr>
<tr>
<td>Deficiencia de potasio</td>
<td>46</td>
</tr>
<tr>
<td>LITERATURA CONSULTADA</td>
<td>47</td>
</tr>
</tbody>
</table>
RECONOCIMIENTOS

A continuación se citan los investigadores que han aportado sobre la identificación, epidemiología y control de enfermedades en tomate.

Dr. Antonio Bello, CSIC, Madrid, España. Nematología.

Dr. Richard Berger, Universidad de Florida, Gainesville, Estados Unidos. Epidemiología.

Dr. Larry W. Duncan, University of Florida, Lake alfred, Estados Unidos. Nematología.

Dr. Andre Dusi. CNPH. EMBRAPA. Brasil. Virología.

Dr. A. Gamliel. Centro Volcani, Bet Dagan, Israel. Solarización.

Dr. Katsuto Kuniyasu, Estación Experimental Nacional de Tsu, Mieken. Japón. Enfermedades de suelo.

Dr. Joe Noling, Universidad de Florida, Lake Alfred, Estados Unidos. Nematología.

Dr. R. Rodríguez – Kabana. Universidad de Auburn, Alabama, Estados Unidos. Desinfección de suelos.

Dr. Paul Vincelli. Universidad de Kentucky. USA. Virología.

PRÓLOGO

El tomate es el cultivo más importante en invernadero en la zona norte de Uruguay. En esta área se produce mayormente para mercado interno durante un largo período que abarca principalmente desde marzo hasta fines de diciembre. Esta publicación presenta las diferentes enfermedades que se han detectado en esta zona con pautas de identificación, epidemiología, control y es el resultado de años de trabajo y de investigación con la colaboración de técnicos nacionales y extranjeros. Proporciona además descripciones y fotografías de las enfermedades y algunos desórdenes fisiológicos.

Ing. Agr. MSc. Roberto Bernal
INTRODUCCIÓN

Las enfermedades de las plantas son el resultado de la interacción entre los patógenos, hospederos y el medio ambiente. En la producción de cultivos en invernáculo, las plantas se ven sometidas a distintos tipos de estrés debido a la gran demanda de espacio y el interés creciente del productor de alcanzar cada vez niveles más altos de productividad mediante la aplicación de tecnología. La mayoría de los patógenos tienen sistemas complejos en sus ciclos de vida que son afectados por la susceptibilidad de los distintos hospederos, interactuando con el medio ambiente.

Controlar enfermedades en un invernáculo es complejo ya que requiere un conocimiento de la ecología de los patógenos y que tipo de medida de control aplicar. Se plantea entonces un manejo racional de plagas en el invernadero, mediante la aplicación del control integrado.

El objetivo del control integrado es mejorar la eficiencia del manejo de las diferentes plagas usufructuando el sinergismo que provee el empleo de las diferentes técnicas de control. Dentro del concepto de manejo de plagas lo que se busca es coexistir con ellas, dirigiendo del control de pestes en el cual se busca eliminar las plagas en el menor tiempo posible. En este caso, si un problema emerge nuevamente se requieren más aplicaciones de productos químicos, a intervalos cada vez más cortos e indefinidamente. Eventualmente, podrían surgir razas resistentes a algunos productos químicos lo que puede provocar una disminución en la longevidad del uso del producto aplicado. El manejo integrado, en cambio, conduce a prácticas que en el mediano y largo plazo minimizan el impacto ambiental y mejoran la sustentabilidad de los sistemas de cultivo, involucrando tácticas múltiples de manejo, que combinan la resistencia del hospedero, prácticas culturales, agentes de control biológico, uso de productos químicos y saneamiento. El saneamiento consiste en la promoción de la higiene y la prevención de las enfermedades manteniendo las condiciones sanitarias.

El monitoreo es una de las medidas principales para conocer el riesgo que presenta una peste, implica la observación en forma regular de las plantas, el almacenamiento de los datos climáticos básicamente humedad relativa y temperatura y la observación del estado de crecimiento de las plantas. En el caso de los insectos y ácaros, la población puede ser estimada por un muestreo en el campo, en cambio en el muestreo de enfermedades la mayoría de los patógenos son microscópicos, por lo que resulta muy importante detectar directamente los síntomas iniciales de la enfermedad, revisando los cultivos asiduamente.

En prácticas culturales se incluye una amplia serie de medidas que abarcan desde la selección del sitio donde se instala el invernáculo, el tipo de invernáculo que implica altura, ancho y presencia o no de ventilación cenital, tipo de nylon a instalar, distancia entre filas y entre plantas del cultivo, uso o no de mulch, manejo de la fertilización, altura del cantero y uso racional del riego. La selección del sitio está determinada por factores tales como tipo de suelo, historia de cultivos, exposición a los rayos solares y las características de los campos linderos que pueden afectar el potencial de infección por presencia de cultivos infectados o muy enmalezados. En el concepto de manejo integrado se busca evitar las condiciones favorables que puedan producir problemas sanitarios.
Las técnicas culturales pueden ser utilizadas para cambiar el desarrollo de una epidemia. Hay un aspecto muy importante: la reducción del nivel inicial de inóculo puede dilatar el comienzo de una epidemia. Las prácticas culturales que reducen el nivel inicial de inóculo combinadas con prácticas que reducen la tasa de infección pueden mantener el rendimiento de los cultivos en forma aceptable y rentable.

CONSIDERACIONES GENERALES

El propósito de los invernáculos es el cultivar hortalizas, frutas o cultivos ornamentales, protegiéndolos de las condiciones adversas del medio ambiente, como por ejemplo, las bajas temperaturas y las precipitaciones. El efecto invernadero es alcanzado por la captura de la energía solar que es recibida por la tierra en longitudes de onda entre 300 y 475 nm.

La mitad de esa energía es reirradiada hacia afuera por el suelo y las plantas, en longitudes de onda infrarrojo entre 3500 y 25000 nm. Una gran cantidad de la energía recibida por las plantas (entre un 60 y un 70%) se disipa por la transpiración del cultivo y la energía remanente es reirradiada por convección y conducción. Sólo el 1% de la energía es utilizada en la fotosíntesis.

En los invernáculos, el intercambio de aire con el exterior es restringido por lo que el agua transpirada por las plantas y la evaporada por el suelo tiende a acumularse produciendo un déficit de presión de vapor bajo (alta humedad).

El déficit de presión de vapor, la humedad relativa y la temperatura están interrelacionados por lo que es imposible alterar uno de ellos sin cambiar los otros. La reducción de excesiva humedad dentro del invernáculo se logra con un adecuado movimiento del aire a través del cultivo y una correcta ventilación, abriendo las cortinas del invernáculo en el momento apropiado.

Por lo tanto, dentro del invernáculo, el medio ambiente es generalmente cálido, húmedo y sin viento. Estas condiciones mueven el crecimiento de los cultivos pero también resultan ideales para el desarrollo de enfermedades causadas por hongos y bacterias y para la actividad de insectos.

La densidad de plantación se vuelve un factor muy importante para el control de enfermedades por la facilidad con la cual los patógenos se mueven de planta a planta. Se debe tener presente que para la mayoría de los hongos y bacterias patogénicos, la infección se produce en un filme de agua sobre la superficie de la planta, a menos que la temperatura, la humedad y la ventilación sean correctamente reguladas. En los invernáculos, las labores son intensivas ya que se requiere atención diaria para atar, desbrotar, cosechar y realizar diversas operaciones, por lo que el riesgo de dispersar patógenos a través de los dedos o en la ropa de los operarios, en las herramientas y las maquinarias, son adicionales al riesgo de producir heridas cuando se hacen las tareas de desbrote. Cuando se suben y bajan las cortinas de los invernáculos existen posibilidades de que se introduzcan esporas a través del viento o bacterias junto con el viento y el agua de lluvia; al igual que el ingreso de insectos transmisores de virus.

A estos efectos, en un invernáculo, las hileras del cultivo se orientan norte-sur para evitar el sombreado al mínimo, produciendo el rápido secado de las superficies de las plantas y la mejor utilización de la energía. Otra medida recomendable es que el invernáculo esté rodeado de franjas de al menos 10 metros, libre de malezas, para evitar que éstas sean reservorio de insectos transmisores de virus.

Cobertura de los invernáculos

Con el fin de crear el efecto invernadero los materiales con que se cubren los invernáculos, deben ser transparentes para recibir la radiación solar con un ancho de onda en el rango de 400 a 3000 nm y opacos a longitudes de onda mayores a 3000 nm. Cuando la temperatura afuera del invernáculo es más baja que adentro del mismo, el agua se condensa en el nylon en el techo, aunque hay algunos materiales que tienen
tratamientos para inducir a que estas condensaciones de agua desaparezcan. La condensación de agua en el techo produce condiciones de alta humedad relativa dentro del invernáculo lo que favorece el desarrollo de enfermedades producidas por hongos y bacterias, que en general necesitan un film de agua para que se produzca la infección. En este sentido es muy importante la presencia de la abertura cenital para la ventilación.

Ventilación de los invernáculos

La circulación del aire es esencial en un invernáculo, ya que uniformiza la temperatura, la humedad, la concentración de dióxido de carbono y sirve para eliminar gases tóxicos tales como el amoníaco y el etileno del suelo así como de la fruta que madura. Además remueve el exceso de humedad del aire y baja la temperatura cuando el sol es muy intenso. Los invernáculos no deben ser instalados en zonas bajas, sombreadas, cercanas a cortinas de árboles por ejemplo.

Importancia del déficit de presión de vapor y el punto de rocío

La circulación del aire dentro del invernáculo y extracción del aire húmedo hacia afuera, es una de las medidas primarias más importantes de control para algunas enfermedades como por ejemplo el moho de la hoja del tomate causada por *Fulvia fulva*; la septoria del tomate causada por *Septoria lycopersici*; la mancha gris del tomate producida por *Stemphyllium* sp y la botrytis del tomate causada por *Botrytis cinerea*. En el caso que se pudiera manejar artificialmente la temperatura en el invernáculo (situación que no se realiza en Uruguay), después de expulsar el aire húmedo sería necesario que el aire nuevo de reemplazo se calentara. Las condiciones de alta humedad, conducen a altos niveles de infección de *Botrytis cinerea* por lo que es necesario asegurar que la ventilación sea la adecuada y prevenir que la temperatura caiga al punto de rocío. El movimiento de las masas de aire dentro del cultivo es muy importante ya que no permite la existencia de films y gotas de agua en partes susceptibles de la planta tales como los pétalos y las zonas donde se puedan haber producido heridas debido a las tareas de manejo. Hay una relación directa entre el tiempo en que la planta permanece mojada y la concreción de la infección, tanto para el caso de bacterias como de hongos. Lo esencial es evitar el punto de rocío para escapar a las condiciones de infección en los patógenos que atacan en la parte aérea de la planta. El punto de rocío o temperatura de rocío es la temperatura a la que empieza a condensar el vapor de agua contenido en el aire. Cuando el aire se satura (humedad relativa igual al 100%) se llega al punto de rocío.

En estas condiciones el déficit de presión de vapor es igual a cero. Desde el punto de vista fitopatológico, la deposición del rocío es un hecho fundamental dentro del invernáculo (Figura 1).

![Figura 1. Relación entre presión de vapor, humedad relativa y temperatura Kpa= kilopascal. W. R. Jarvis. 1992.](image)

Desde hace varios años se trabaja en la Estación INIA Salto Grande con sistemas de alarma para control de botrytis en cebolla, registrando datos de humedad relativa y temperatura durante las 24 horas, los que se transforman a déficit de presión de vapor. Estos valores de déficit de presión de vapor posteriormente se transforman a porcenta-
Algunos aspectos que predisponen a las enfermedades

Definimos estrés como cualquier factor capaz de producir un daño potencial a la planta. Hay varios tipos de estrés, producidos por factores tales como la sequía o la abundancia de agua, temperatura y nutrición; algunos de ellos son reversibles y otros no.

Muchos investigadores consideran que el estrés es generalmente una predisposición a las enfermedades ya que esta condición es rápidamente explotada por los organismos que las producen. Los extremos de temperatura son estresantes. Por ejemplo regar con agua a baja temperatura produce un shock en los plantines que los predispone al ataque de patógenos tales como *Pythium* spp.; *Rhizoctonia solani* y *Botrytis cinerea*.

Existe otro tipo de estrés que se manifiesta cuando hay un exceso o un déficit de agua en el aire o en el suelo. Hay patógenos que son más virulentos en suelos secos (a relativamente bajo potencial osmótico) como el *Fusarium* spp y otros como *Phytophthora* spp; *Phytophthora* spp y *Rizoctonia solani* que son más virulentos en suelos húmedos (altos potenciales osmóticos). La *Phytophthora* es muy severa en suelos húmedos pero se observa más predisposición a esta enfermedad cuando hay períodos de sequía previos a un alto contenido de humedad en el suelo.

La estructura del suelo determina el espaciamiento de los poros, el potencial de retención de agua y la formación de films de agua en el suelo y en las raíces, lo que facilita el crecimiento de las hifas y el movimiento de las bacterias, nematodes y zoosporas en el caso de los Phycomycetes.

La excesiva humedad en el suelo en combinación con la alta humedad atmosférica produce un mojado en las hojas del cultivo que predispone a la planta a la infección de patógenos que son dependientes del agua, como algunos hongos y bacterias. Son excepciones a la necesidad de alta humedad, los mildius pulverulentos tipo *Erisiphe* y *Sphaeroteca* en los que los conidios poseen suficiente agua interna para poder germinar independientemente del agua externa.

El movimiento de las bacterias sobre la superficie de las plantas aumenta cuando el déficit de presión de vapor es bajo (menor de 0,3 Kpa) que se corresponde con una humedad relativa por encima de 90%. Las bacterias se agrupan donde persisten los films de agua sobre todo en las depresiones y en las bases de los pelos de la hoja cuando existen.

El manejo del potencial de agua en el suelo también es un factor a tener en cuenta en el manejo de enfermedades, aunque el potencial de agua que es óptimo para los cultivos no produce condiciones favorables para el desarrollo de los patógenos.

El término enfermedad es todo lo que produce una desviación de lo que es la apariencia normal tanto sea en la forma o el funcionamiento de una planta de tomate en sus aspectos vegetativos o reproductivos. Las enfermedades son producidas por agentes infecciosos o bióticos o no infecciosos o abióticos. Las enfermedades bióticas, son causadas por varios agentes vivos tales como los hongos, bacterias, virus, agentes parecidos a los virus, nematodos y panerógam parásitas. Las enfermedades producidas por agentes abióticos son debidas fundamentalmente a condiciones adversas de medioambiente, problemas nutricionales, defectos genéticos y prácticas culturales equivocadas. Las enfermedades se desarrollan cuando existe un huésped susceptible, un patógeno capaz de producir infección y el medio ambiente adecuado. El resultado de la interacción de todos estos factores, produce los síntomas de las enfermedades.

Las medidas de control de enfermedades de las plantas, están clasificadas de acuerdo a cuatro principios básicos:

I) Exclusión. Es la prevención de la entrada del patógeno dentro de un área todavía no infectada o la prevención de su establecimiento en ese lugar. Cuando el área no infectada está fuera de la zona infectada por el patógeno, la exclusión actúa contra la distribución; mientras que cuando el área está...
dentro de la zona infectada del patógeno, la exclusión previene la dispersión. II) La erradicación es la eliminación del patógeno de una zona dentro de la cual ha sido introducido. Las medidas de erradicación rara vez resultan en la total eliminación del patógeno. III) La protección es la prevención de la entrada del patógeno y el establecimiento de un obstáculo entre él y la planta sensible por la acción de barreras químicas o físicas entre el inóculo y la zona donde se está produciendo la infección. IV) El desarrollo de resistencia se refiere a la manipulación de un cultivo en tal forma que el patógeno no pueda establecerse en la planta.

Las medidas de protección se deben tomar antes de que se efectúe la inoculación, por lo que el patógeno debe ser destruido en la zona de infección antes de su entrada a la planta.

Algunas enfermedades pueden ser identificadas fácilmente por los síntomas que se observan, en cambio otras requieren una investigación mucho más profunda mediante observaciones en el microscopio o análisis apropiados en el laboratorio, posteriormente a la aislación del agente patógeno. También es muy importante cuando se hace identificación de enfermedades no realizar los diagnósticos de los problemas sin haber observado la enfermedad en el campo, obteniendo información asociada tal como prácticas culturales, condiciones del suelo, variedad, momento de aparición de los síntomas, productos químicos aplicados y datos climáticos.

La incidencia y la severidad de las enfermedades producidas por agentes bióticos están determinadas por la virulencia del patógeno, la susceptibilidad del hospedero y las condiciones ambientales. Generalmente, en condiciones de baja humedad relativa este tipo de enfermedades no son importantes y los patógenos no pueden sobrevivir para producir infección.

PREVENCIÓN, MANEJO Y CONTROL DE ENFERMEDADES

La prevención es una de las formas más efectivas de reducir pérdidas por enfermedades. Existen restricciones a la importación de materiales tanto sea semilla, materiales vegetativos o frutas desde lugares donde existen enfermedades problemáticas. Por eso es que existen medidas de cuarentena antes de liberar esos materiales importados. La selección del lugar de plantación del cultivo, así como el adecuado drenaje, son aspectos relevantes, evitando el anegamiento del suelo debido al riego excesivo. Hay otro tipo de enfermedades que se vuelven problema si las plantas están en incorrectas condiciones de nutrición.

Hongos

Los hongos son seres vivos que no poseen clorofila y cuyas estructuras somáticas son generalmente filamentosas y ramicificadas. Tienen paredes celulares y núcleo. Se reproducen sexualmente y asexualmente. Generalmente no son móviles aunque tienen células reproductoras que sí lo son. Se multiplican a través de las esporas que a su vez sirven para su clasificación al igual que la morfología. Los hongos no poseen tallos, raíces u hojas ni tienen desarrollado un sistema vascular como lo tienen las plantas. La mayoría de las partes de su organismo son potencialmente capaces de crecer. En la naturaleza, los hongos pueden vivir como parásitos infectando organismos vivos o como saprobios atacando materia orgánica. Muchos forman relaciones simbióticas con las plantas como los líquenes y las micorrizas. Los hongos que viven exclusivamente sobre materia orgánica y que son incapaces de atacar organismos vivos, son saprobios obligados; aquellos que son capaces de producir enfermedades o vivir sobre materia orgánica de acuerdo a las circunstancias son parásitos facultativos y aquellos que pueden vivir sólo sobre su hospedero, son parásitos obligados. De ahí que algunos hongos pueden crecer saprofiticamente sobre restos de cultivos en el suelo o ser cultivados en un medio sintético en el laboratorio. Sin embargo hay algunos hongos como las rojas, los mildius vellosos y los pulverulentos que son parásitos obligados por lo que pueden crecer sólo sobre las plantas. Los hongos no se pueden identificar sin que sus estados
reproductivos estén presentes. El micelio de los hongos parásitos crece dentro del hospedero intercelularmente o penetrando a través de las células. Las esporas de los hongos son diseminadas por el viento, insectos, lluvia y el salpique del agua y a su vez por la gente y animales. A su vez algunas esporas tienen paredes muy gruesas por lo que se adaptan fácilmente a sobrevivir en el suelo o en otros lugares durante muchos años. Sobreviven de un año para otro en plantas muertas o vivas que incluyen frutas o semillas en el suelo.

Bacterias

Estos organismos son unicelulares cuyo rango de medidas varía entre 0,2 a 10 micras de tamaño. Una característica de las bacterias es que el material genético no está separado del citoplasma por una membrana. Los géneros de bacterias que producen enfermedades de las plantas son *Pseudomonas, Erwinia, Agrobacterium, Clavibacter Xanthomonas*. Las bacterias se reproducen con mucha rapidez y de ahí su importancia como patógenos ya que pueden producir enormes cantidades de células en un corto período de tiempo. En condiciones favorables pueden dividirse cada 20 minutos por lo que en 24 horas pueden resultar cantidades inconmensurables de individuos. Las paredes celulares de la mayoría de las especies de las bacterias están cubiertas por un material viscoso que puede ser delgado o denso. Las bacterias fitopatógenas poseen flagelos en forma de filamentos. Algunas presentan un solo flagelo, mientras que otras tienen muchos flagelos en uno de los extremos y otras los tienen todo alrededor de la superficie. Las bacterias pueden ser cultivadas artificialmente en medios de cultivo en el laboratorio y a su vez sobrevivir sobre plantas del cultivo, malezas susceptibles y restos orgánicos en el suelo. La penetración de las bacterias a las plantas, se efectúa a través de aberturas naturales y heridas y después se introducen en los espacios intercelulares. Se dispersan por el viento y el agua de lluvia así como por salpique. También se pueden mover por el agua de riego, movimiento de plantas infectadas, semillas, injerto y por equipos mecánicos utilizados en las chacras.

Virus

El concepto moderno de la palabra virus se refiere a un grupo de partículas extremadamente pequeña, capaces de pasar a través de un filtro bacteriano, no visibles generalmente en los microscopios comunes y que son parásitos obligados. Se pueden observar en el microscopio electrónico. Los virus están formados por un grupo de una o más moléculas de ácidos nucleicos, normalmente encapsulados en un saco protector o sacos de proteína o lipoproteínas que le dan la posibilidad de organizar su propia replicación solamente dentro de las células del hospedero. Los virus, no están separados del contenido de las células del hospedero por una membrana de dos capas lipoproteica y dependen de la síntesis de proteína del hospedero. No pueden ser cultivados en medios artificiales aunque pueden ser aislados de su hospedero en forma pura y posteriormente ser caracterizado y reconocido por sus propiedades físico-químicas. Los virus, no pueden por sí solos penetrar la cutícula de las plantas y establecer una infección. La infección se produce si entran a los tejidos de una planta a través de una herida o con la ayuda de otro organismo que lleve al virus de una planta infectada a una sana. Este tipo de organismo se llama vector. También los virus pueden ser transmitidos a través de la semilla, polen, o por partes vegetativas de una planta cuando ésta se encuentra infectada. El 70% de todos los insectos vectores son pulgones. Las moscas blancas, trips, cicadélidos (chicharritas) son también importantes vectores al igual que algunos coleópteros (cascarudos).

La transmisión de virus a través de los pulgones se pueden dividir en 3 tipos: 1. **No persistente** 2. **Persistente** y 3. **Semipersistente**.

1. **Transmisión no persistente.** En este tipo de transmisión la adquisición del virus y su inoculación ocurre en periodos muy cortos de alimentación de los pulgones que van desde segundos a algunos minutos. El insecto vector es infectivo inmediatamente después que adquiere el virus por lo que no hay período de latencia.
en el vector. Esta manera de transmisión ha sido considerada un proceso mecánico de contaminación del estilete del insecto. Este tipo de transmisión se considera de baja especificidad y es llevada a cabo generalmente por pulgones que se alimentan regularmente sobre cultivos pero fundamentalmente buscando la superficie de un hospedero palatable. El vector en este caso, pierde rápidamente la habilidad de transmitir el virus generalmente dentro de un periodo de cuatro horas. El virus no se multiplica dentro del insecto. Diferentes especies de pulgones pueden diferir considerablemente en la eficiencia de transmisión.

2. **Transmisión persistente.** Generalmente se le asocia a una relación muy estrecha entre el virus y el vector. Hay ciertos virus que son diseminados por sólo una especie de vector y aún los individuos podrían diferir en su eficiencia como vector. En este caso de transmisión el virus es adquirido por el insecto a través del canal alimentario, pasa a través de las paredes del intestino, circula en los fluidos del cuerpo o hemolinfa y posteriormente contamina la saliva por lo que el proceso de adquisición del virus lleva un tiempo largo. El periodo latente podría tardar 12 horas aproximadamente. En este tipo de transmisión el virus es circulativo. Cuando el virus se multiplica dentro del vector se le llama propagativo. El insecto se vuelve infectivo en su próxima alimentación después de un periodo de latencia por lo que un único vector individual puede infectar numerosas plantas. Existen algunos casos de transferencia transovarial a través de los huevos del insecto en algunos virus que atacan plantas.

3. **Transmisión semi-persistente.** Básicamente estos virus no circulan dentro del vector pero el insecto posee la habilidad de transmitirlo por un periodo de 3 a 4 días. El virus es adquirido por el vector en tan sólo 30 minutos pero la transmisión es más eficiente si el tiempo de alimentación sobre la planta son muchas horas. Al igual que en los virus que se transmiten en forma persistente están asociados con células del floema por lo que los vectores tienen que explorar en tejidos más profundos para adquirir e inocular el virus.

Existen casos en que los pulgones pueden transmitir solamente algunos virus cuando existe un segundo virus auxiliar (helper virus) en la planta infectada donde los pulgones se están alimentando.

Existe también transmisión de virus a través de los nematodes en una forma no circulativa y no se han encontrado evidencias que los virus se multipliquen dentro del vector. Los hongos transmiten virus en algunos casos como sucede en el caso de *Oipidium* spp., *Polymixa* y *Spongospora* spp.

La infección de las semillas por virus juega un rol preponderante tanto en la transmisión como en la sobrevivencia de un número importante de enfermedades. Este hecho es un punto de inicio para el establecimiento de una enfermedad en un cultivo y la dispersión secundaria de la misma. En el caso del virus del mosaico del tabaco en semillas de tomate, el virus es transmitido en o sobre la testa.

Muchos virus, tienen malezas u hospederos alternativos que sirven como reservorios de virus de donde pueden ser infectados los cultivos.

El plantar nuevos cultivos al lado de cultivos viejos similares no es recomendable al igual que el realizar monocultivos. Estas medidas no son sólo aplicables para los virus sino también para otros agentes patógenos.

Viroides

Estos agentes patógenos son de bajo peso molecular, contienen sólo ácido ribonucleico (RNA), carecen del saco proteico, se replican en hospederos susceptibles y son transmitidos por insectos vectores, por savia, y por contacto. Son las partículas más pequeñas que se conocen que producen enfermedades en las plantas.
Mycoplasmas

Existen otro grupo de enfermedades en las plantas generadas por organismos que producen síntomas similares a los virus que son los micoplasmas. Pertenecen a un grupo que se caracterizan por no tener pared celular y son muy pequeños. Son fácilmente observables al microscopio electrónico. Se reproducen por fisión binaria y son resistentes a la penicilina pero susceptibles a la tetraciclina. Contienen ácido ribonucleico (RNA) y desoxiribonucleico (DNA) en la forma de un espiral en su región nuclear. La presencia de estos dos ácidos, los distingue claramente de los virus. Se transmiten por chicharritas (Cicadélidos) o psillidos.

Nematodes

Los nematodes son los animales multicelulares más abundantes sobre la tierra. Son muy activos y pertenecen a un grupo no segmentado de lombrices que están en todos lados. Se encuentran en filas de agua en todos los suelos naturales, en humus y en tejido vegetal en descomposición. No pueden ser observados en detalle sin la ayuda de un microscopio, son translúcidos e imposible verlos en el suelo. La mayoría de las especies que parasitan las plantas son elongados y vermiformes a través de sus ciclos de vida. Se mueven en el suelo lentamente por sus propios medios, alrededor de unos pocos centímetros por estación. Sin embargo son fácilmente distribuidos por cualquier agente que mueva las partículas del suelo como equipos de labranza, así como por el riego, agua de inundación y de drenaje.

La dispersión a larga distancia es a través de plantas infectadas, suelo, herramientas contaminadas y equipos.

Para sobrevivir requieren un film de agua libre sobre las partículas del suelo o partes de plantas para su motilidad y sobrevivencia. Si existe baja humedad en el suelo restrinben su movimiento. Lluvias intensas o riego que produzcan inundación producen escasez de oxígeno en el suelo lo que incide en una alta mortalidad en estos organismos aeróbicos. Las heladas y altas temperaturas generalmente producen una alta mortalidad sobre estos organismos. Los nematodes no pueden regenerar su cuerpo cuando se le han destruido partes de él. La mayoría de los nematodes parásitos de plantas, liberan enzimas a través del estilete para digerir parcialmente el contenido de las células. Ese contenido parcialmente digerido es retirado por el nematode con su estilete. Otras especies tienen hábitos de alimentación sedentarios y se nutren en un sólo lugar por el resto de sus vidas como sucede en los nematodes que producen nódulos.

De acuerdo a los hábitos de alimentación los nematodes parásitos se pueden dividir en ectoparásitos, semiendoparásitos y endoparásitos.

Ectoparásitos. Quedan en el suelo y penetran el tejido del hospedero con sólo el estilete o parte de la cabeza. Se alimentan sobre células cercanas a la superficie de las raíces incluyendo células corticales cercanas al tejido vascular.

Semiendoparásitos. Generalmente se alimentan con la cabeza y la parte final anterior de su cuerpo incrustado en el tejido del hospedero.

Endoparásitos. Penetran el tejido de las plantas completamente o con una gran porción de su cuerpo incrustado en el hospedero.

En cualquiera de estos tres hábitos de alimentación, los nematodes pueden ser sedentarios o migratorios. **Sedentarios** es en el caso que se alimentan en el mismo lugar, inclusive a veces en la misma célula durante varios días. **Migratorios** se alimentan en muchos lugares sobre la superficie o debajo de ella en los tejidos de las raíces sin estar adheridos a la superficie de las mismas.

Generalidades sobre el ciclo de vida de los nematodes

La mayoría de los nematodes que parasitan las plantas tienen un ciclo de vida similar. Se desarrollan a partir de huevos y posteriormente existen cuatro estados larvales o estados juveniles que posteriormente se vuelven adultos. Los juveniles en muchos géneros son similares a los adultos en apariencia, exceptuando la estructura de los
carácteres sexuales. En la mayoría de las especies, los nematodes eclosionan de los huevos como segundo estado juvenil (J2), aunque en unos pocos géneros eclosionan como el primer estado juvenil (J1). Los estados juveniles se mueven a través de films de agua (de 0,2 a 0,5 mm de espesor) rodeando las partículas del suelo y la superficie de las plantas buscando un hospedero y un sitio donde poder alimentarse. La mayoría de las especies se alimentan en cualquiera de los estados después de eclosionar pero hay excepciones en ciertas especies en que los machos y aún los estados juveniles nunca se alimentan. En algunas especies los adultos se cruzan y las hembras ponen huevos fertilizados. En otras especies, los machos son desconocidos o muy raros y no son necesarios para la fertilización de los huevos. Aquellos que se cruzan son amfimícticos y los que no se cruzan son partenogenéticos. La mayoría de las especies de los nematodes completan su ciclo de vida entre 3 y 6 semanas durante la estación de crecimiento si existe suficiente humedad presente y si la temperatura del suelo está en el rango óptimo para las especies que generalmente es entre 20 y 30° C. Sin embargo hay especies que les puede llevar un año completar su ciclo. Los estados juveniles en algunas especies, pueden entrar en un estado de quiescencia y así sobrevivir 10 generaciones, cada mes que el sistema de raíces continúe sobreviviendo representa una generación adicional y un potencial aumento de al menos 10 veces en el caso de nematodes que producen nódulos. Aún si las temperaturas van bajando paulatinamente se necesita al menos un período de dos meses para completar una generación adicional.

La utilización de plantines libres de nematodes previene la infección en un área a trasplantar.

La rotación con el mismo cultivo, es una práctica antigua y si un lugar es plantado sin interrupción muchos organismos se reproducirán y aumentarán en número. Un periodo de rotación con cultivos no hospederos, causa el cese de la reproducción y permite que los factores de mortalidad natural reduzcan su número. Planeando la secuencia de cultivos a plantar se pueden evitar altos picos de plagas.

La inundación y el barbecho, en ciertas situaciones, pueden ser usados para reducir el número de nematodes en el suelo. La inundación de un campo puede ser utilizado cuando el nivel del agua puede ser fácilmente controlado y mantenido por un período prolongado. Si esta medida pudiera ser utilizada, periodos alternativos de 2 ó 3 semanas de inundación, secado y después inundación nuevamente es más efectivo que un período constante de inundación. La inundación probablemente mata los nematodes debido a que existen largos períodos sin plantas hospederas más que por un efecto físico sobre los mismos.
El barbecho, se refiere a dejar un campo sin cultivo por períodos prolongados. En esta situación la mayoría de los nematodes bajan su población. Adicionalmente, la exposición a altas temperaturas sobre la superficie del suelo puede reducir significativamente el número y el tipo de nematodes. Si el barbecho, es utilizado para reducir la población de nematodes, el campo debería ser cultivado regularmente para prevenir el crecimiento de malezas y además para exponer nuevas porciones de suelo a los efectos del secado y su calentamiento. Si las malezas se dejan crecer sin control en un área en barbecho, muchos tipos de nematodes podrían crecer, sobrevivir, y reproducirse sobre las malezas por lo que el beneficio del uso del barbecho se perdería.

Las variedades resistentes, también tienen efectividad para el control de nematodes. El medio ambiente no es alterado y no requiere inversión de recursos adicionales. Este factor se puede integrar con otras tácticas de manejo.

Las enmiendas al suelo tanto de origen orgánico o inorgánico, han sido agregadas al suelo por su efecto supresivo sobre los nematodes parásitos de las plantas. Las enmiendas altas en nitrógeno, mejoran la fertilidad del suelo y la capacidad de retención del agua así como también suprimen la población de nematodes. Aunque su modo de acción no está demostrado en muchos casos, la mayoría de las explicaciones sugieren que las enmiendas o los productos de su degradación son directamente tóxicos a los nematodes o sirven para aumentar la proliferación de los antagonistas que matan o debilitan a los nematodes.

Los métodos físicos de control de nematodes están basados fundamentalmente en la utilización del vapor y en la solarización del suelo. A pesar de las altas temperaturas que se pueden alcanzar en la solarización, se puede detectar pérdida de eficacia por la profundidad a la cual están los nematodes o a la resistencia al calor del organismo problema.

El control químico realizado por los nematicidas produce no sólo rendimientos más altos sino también más uniformidad de la calidad y madurez del producto. El valor de productos fumigantes y no fumigantes para el control de nematodes ha sido demostrado para diferentes cultivos. Los productos químicos nematicidas pueden ser clasificados por su volatilidad. Los fumigantes (hidrocarburos halogenados o los precursores de isocianato) generalmente dan un control superior de los patógenos de suelo mientras que los no fumigantes (organofosforados o carbamatos inhibidores de la acetilcolina) tienen un espectro de acción más reducido de organismos y actúan matando o desorientando el comportamiento de los nematodes por su efecto sobre el sistema nervioso. Los factores que afectan la eficacia de los nematicidas incluyen el momento de aplicación, la localización, la distribución en el suelo, la retención en el suelo de los componentes volátiles, el lavado del producto y la degradación microbiana acelerada debido a aplicaciones repetidas. La adopción de métodos de control integrado puede reducir el uso de nematicidas no sólo por aumentar el uso de otras tácticas de manejo sino también por dar racionalidad a las decisiones.

ENFERMEDADES CAUSADAS POR HONGOS

Manchas gris de las hojas

Organismo causal: *Stemphylium* spp.

Esta enfermedad había casi desaparecido de los cultivos de tomate pero en los últimos años ha vuelto a aparecer con mucha intensidad y severidad en algunos cultivares. El ataque de este hongo, está limitado casi enteramente a las hojas apareciendo al principio pequeñas manchas del lado de abajo de las mismas. Las manchas son casi circulares y se presentan al azar sobre la superficie simultáneamente de ambos lados llegando a un promedio de 2 mm de diámetro aunque en las hojas más viejas pueden llegar hasta 4 mm (Figs. 2 y 3). Las manchas presentan a su vez un halo que las rodea cuando se las observa en lupa o contra la
Enfermedades de tomate en invernadero

En las hojas viejas las manchas se vuelven coalescentes y la hoja se torna amarilla y cae. También los centros de las manchas se rompen. Este hongo, no ataca fruta. Cuando el clima es apropiado para el desarrollo de la enfermedad sobre todo en noches frescas y húmedas todas las hojas de la planta, excepto las terminales, pueden ser afectadas y la producción de fruta se ve seriamente dañada.

Algunos aspectos del ciclo de la enfermedad y su epidemiología

La enfermedad puede comenzar desde que las plantas son muy pequeñas. A veces se dan ataque en los cotiledones. Este hongo permanece viable de un cultivo a otro a través de restos de tomate infectado. La superposición de cultivos a través de todo el año produce reinfecciones. También es importante la supervivencia del inóculo en plantas abandonadas. Todas las especies de Stemphylium conocidas son excelentes saprófitos y se desarrollan rápidamente sobre tejido necrótico de plantas de tomate. Los conidios de este hongo, se dispersan a distancia por el viento. Las esporas germinan rápidamente cuando existe la presencia de un film de agua (inclusive el rocío) y un clima relativamente cálido (entre 24 y 27 º C) produce de inmediato un crecimiento rápido del hongo. El patógeno, se desarrolla dentro del hospedero y los síntomas se pueden observar aproximadamente en un período de 5 días.

Control. En condiciones favorables de desarrollo de la enfermedad, aplicar fungicidas regularmente. Se han obtenido buenos resultados utilizando fungicidas del grupo de los ditiocarbamatos en combinación con clorotalonil y algunos fungicidas del grupo de las stroblurinas tales como el pyraclostrobin y el pyraclostrobin con boscalid. El manejo de la ventilación es muy importante para evitar el desarrollo del patógeno.

Fulvia fulva (Cooke) Ciferri
Cladosporium fulvum Cooke

Moho de la hoja

Este hongo se convierte en una grave enfermedad siempre y cuando el cultivo de tomate, sea cultivado en condiciones de alta humedad por lo que es muy común observarlo en condiciones de invernadero.

Los síntomas se observan sólo en las hojas (Figs. 4 y 5) apareciendo primero en las más viejas y progresivamente se va extendiendo a la parte superior de la planta. Al principio, se observan zonas amarillentas con márgenes indefinidos sobre la parte superior de la hoja.

Simultáneamente, el patógeno comienza a esporular sobre el envés de la hoja en las zonas que estaban asociados con el amarillamiento. La esporulación del hongo es de un color verde oliva. Cuando el síntoma avanza, las hojas se tuercen y pueden caer...
en forma prematura. La defoliación paulatinamente progresa hacia la parte de arriba de la planta. Existen varias razas fisiológicas de este hongo. A su vez no se conoce el estado sexual.

Este patógeno puede sobrevivir como saprófito en invernáculos o a nivel de campo en el suelo como esclerocios y/o conidios que pueden sobrevivir hasta un año en condiciones adversas. Nuevas generaciones de conidios se pueden desarrollar de los esclerocios. También las semillas pueden estar contaminadas y volverse una fuente de inóculo lo que las convierte en un importante vehículo para la distribución del hongo. La germinación de las esporas se puede dar en 4 horas siempre que las condiciones ambientales sean las apropiadas. La germinación se produce en agua con niveles de humedad cercanos al 85% y con temperatura óptima de 25°C. Los síntomas, aparecen aproximadamente a los 10 días después de la inoculación cuando la colonización de la hoja a través del micelio intercelular está muy avanzada. Entre los 10 y 14 días después de la inoculación los conidióforos crecen a través de la apertura de los estomas y se producen muchos conidios cuando la humedad está en torno de 78 y 92%. A 58% de humedad relativa se producen pocos conidios.

Los conidios son fácilmente desplazados de las hojas cuando las plantas se mueven durante prácticas de manejo tales como el desbrote, cosecha y las aplicaciones de hormonas. También el viento y la ropa de los trabajadores ayudan a dispersar los conidios de este hongo. En los invernáculos de la zona de Salto paulatinamente cada año se están registrando ataques cada vez más intensos de esta enfermedad existiendo algunos problemas para su control sobre todo cuando hay mucha humedad dentro del invernadero o la planta está conducida en forma inadecuada. Este hongo tiene gran variabilidad genética lo que hace rápidamente susceptible a cultivares que tienen cierto grado de resistencia.

Control. Es importante eliminar los restos de tomate del año anterior. Se debe utilizar semilla libre de la enfermedad. Es importante minimizar los períodos largos de humedad sobre las hojas tratando en lo posible que haya circulación de aire dentro del invernáculo. El desbrote en el momento oportuno ayuda a controlar mejor esta enfermedad. Fungicidas como el pyraclostrobin, pyraclostrobin + boscalid, flutriafol, en experimentos realizados en INIA Salto Grande han dado un buen control de la enfermedad.

Septoria lycopersici Speg. **Mancha de hoja**

Esta enfermedad en este momento no es importante ya que los cultivares de tomate que se están plantando tienen resistencia. Fue un gran problema cuando en la zona se cultivaba el tomate «cuarentón» que era una semilla local y se detecta en plantaciones en «quincho» y posteriormente en los invernáculos.

Al inicio, aparecían numerosas manchas pequeñas acuosas en las hojas más viejas
después del cuajado de la fruta. Las manchas tenían un tamaño final de 2 a 5 mm de diámetro bordes marrón oscuro y el centro con colores marrón claro (Figs. 6 y 7). Generalmente se observaban halos de color amarillo alrededor del síntoma. Cuando el ataque era importante las hojas morían y caían.

Septoria se diferencia de **Alternaria** por el tamaño uniforme de las manchas y que además carecen de anillo concéntricos en las mismas. La presencia de pequeñas estructuras de color negro (picnidios) en el centro de las manchas confirma esta enfermedad. No se necesita utilizar aumento para verlos. La caída de las hojas producto de la enfermedad, provoca el quemado de sol en la fruta. Nunca se observó ataques sobre la fruta.

En condiciones de alta humedad, se producen muchas esporas en los picnidios cuando éstos están maduros. Las esporas penetran el tejido de las hojas a través de los estomas. La temperatura óptima de esporulación es 25 °C. Las esporas se dispersan por viento y agua, salpique, operaciones de manejo de la planta y el equipo de cultivo. Pueden germinar en 48 horas en condiciones óptimas y el síntoma comienza a aparecer a los 5 días.

Este hongo, no es un habitante de suelo pero puede persistir de una estación a otra sobre restos de plantas infectadas incorporadas al suelo. También puede sobrevivir en malezas del grupo de las solanáceas. Se cita por investigadores de Estados Unidos que la papa y la berenjena, son susceptibles a la enfermedad. No se conoce si existe la transmisión por semilla.

Control. Mantener limpias las zonas de producción de malezas y eliminar restos de cultivo atacados del año anterior. Los fungicidas mancozeb, clorotalonil y los del grupo de las strobilurinas dan un buen control de la enfermedad.

Botrytis cinerea

Moho gris

Este hongo es el más importante que ataca los cultivos de tomate y otras hortalizas. Si no se logra un control aceptable de la enfermedad se pueden producir importantes pérdidas en el cultivo. Ataca principalmente en los invernáculos desde mayo en adelante observándose ataques intensos a veces hasta fines de octubre dependiendo de las condiciones climáticas. Los productores se ven obligados en algunas épocas del año a aplicar fungicidas hasta dos o tres veces por semana para poder controlar la enfermedad.

El moho gris, ataca todas las partes vegetativas (Figs. 8, 9 y10) de la planta de
tomate formando sobre los tejidos atacados en condiciones de alta humedad cantidad de esporas que al ser agitadas por las prácticas de manejo o el viento, produce una dispersión importante de la enfermedad. Los primeros ataques se observan desde mediados de mayo en adelante que coincide con la baja de las temperaturas y por lo tanto menos tiempo de los invernáculos abiertos lo que conduce a un alza de la humedad relativa y presencia de agua sobre los tejidos de las plantas (Fig. 11).

Generalmente los síntomas se observan al principio en la floración (Fig. 12) en los pétalos de la flor que se infectan. Al caer, contaminan cualquier órgano vegetativo de la planta tanto sea hojas, tallos o frutas (Figs. 13). Cuando ataca los tallos, el síntoma avanza y los destruye matando como consecuencia la planta.

Los pétalos atacados infectan la fruta produciendo descarte de la misma.

A veces sucede que los pétalos comienzan a infectar la fruta, pero el ataque se detiene debido a que las condiciones ambientales, no son propicias para el desarrollo de la enfermedad por lo que la enfermedad no se desarrolla y entonces aparece un síntoma que se le denomina como «mancha fantasma» (Figura 14). Cuando la fruta se raja, es fácilmente colonizada (Figura 15).

En condiciones de invernáculo, cuando la intensidad de luz es baja y la humedad
INIA SALTO GRANDE

ENFERMEDADES DE TOMATE EN INVERNADERO

El viento remueve y transporta las esporas a largas distancias. Los trabajos de desbroce, conducción y cosecha influyen directamente en la diseminación del hongo planta a planta. Cuando las esporas aterrizan sobre tejido húmedo, germinan rápidamente y penetran a través de las heridas, pétalos viejos o follaje senescente. La penetración de tejido sano generalmente no sucede. Casi siempre se forman esclerocios de color negro sobre las superficies atacadas. Los esclerocios pueden soportar condiciones adversas como períodos largos de baja temperatura o sequía y cuando las temperaturas y las condiciones de humedad son favorables germinan. La humedad es de primordial importancia para el desarrollo de la Botrytis. La humedad relativa del aire debe ser superior al 90% para que se produzca la germinación de las esporas. Las zonas que están sometidas a nieblas intensas o rocíos fuertes son ideales para el desarrollo de la enfermedad. La temperatura óptima de desarrollo es entre 18 y 23° C. Por encima de 24° C la germinación de los conidios decrece (Fig. 16).

Control. La regulación de la temperatura dentro del invernáculo y de la humedad relativa son los factores más importantes para manejar la enfermedad. Estas medidas se pueden llevar a cabo mediante la abertura y cerrado de cortinas, estructuras adecuadas del invernáculo entre lo que es importante la altura y la abertura cenital. Además la distancia de plantación, el manejo de la planta, la fertilización nitrogenada, el riego, y un invernáculo en lo posible sin goteras son factores primordiales que deben ser manejados correctamente para evitar microclimas favorables para el desarrollo de la enfermedad. En lo posible, se debería de lograr dentro del invernáculo temperaturas no menores a 20° C y una humedad relativa que no sobrepase el 90%. Fungicidas a base de clorotalonil, iprodione, ciprodinil más fluudioxínil, fenexamid, pyraclostrobin + boscalid están proporcionando un control eficiente de la enfermedad. Es importante que la aplicación de fungicidas sea realizada desde la primera floración y pulverizadora neumática para lograr una buena penetración y cobertura de los productos en las plantas. Se están probando agentes biológicos tales como el uso de trichoderma para el control de esta enfermedad. Los resultados están mostrando que cuando el ataque de Botrytis no es muy severo se puede reducir has-

Figura 14.

Figura 15.

Figura 16. Evolución del número promedio de plantas de tomate con Botrytis en tratamiento testigo.
ta un 50% la utilización de fungicidas convencionales.

Alternaria solani
«Tizón temprano»

Todas las partes de una planta de tomate pueden ser atacadas. En las plantitas recién nacidas, se puede observar a veces síntomas como pudriciones que rodean todo el tallo y las plantitas mueren. Cuando las plantas ya son grandes, se pueden observar lesiones sobre un lado del tallo las que se vuelven elongadas y hundidas. Los síntomas sobre hojas, son característicos ya que son circulares, cercanos a 1.5 cm de diámetro, de color marrón conteniendo anillos concéntricos. Las manchas producidas por este hongo, pueden ocurrir aisladas o coalescentes. Cuando el ataque es muy intenso y severo, las hojas caen. Los primeros síntomas, aparecen en las hojas más viejas (Figs 17 y 18) y van progresando hacia las hojas más nuevas. También se pueden ver manchas marrones sobre los pedicelos y sobre los cálices cuando están adheridos a la flor o fruta (Fig. 19). De esta manera, los frutos se infectan a través del cálice o del pedicelo tanto cuando están verdes o maduros. Las manchas son generalmente marrones a negras y alcanzan hasta casi 2.5 cm de diámetro. Son firmes, depresadas y tienen halos concéntricos en su interior. Las lesiones sobre fruta, pueden estar cubiertas por una masa de esporas de color negro las que por las tareas comunes de manejo son diseminadas. Este síntoma en fruta, es muy común observarlo en los meses más cálidos en los invernáculos de la zona norte del Uruguay. No es una enfermedad grave hasta el momento, pero puede en algunas situaciones producir pérdidas importantes de fruta y hojas.

Este hongo sobrevive sobre restos infectados en el suelo o en la semilla. También las plantas que sobreviven entre cultivo y cultivo, sirven como fuente de inóculo. La infección se da en tiempo cálido (24-29° C) y húmedo. También se observan ataques de esta enfermedad aún a temperaturas más altas. Entre 28 y 30° C, este hongo germina en alrededor de 1.5 horas. El patógeno penetra directamente tanto a través de la cutícula como de heridas. En 2 ó 3 días, las lesiones se vuelven visibles. Los conidios son diseminados por el viento. En Israel, estudiaron que se necesitan cerca de 10 horas de rocío para que se formen las esporas. Si no hay rocío, se producen 8 veces menos esporas. Al tener un ciclo tan corto en condiciones favorables se pueden repetir numerosos ciclos en períodos limitados de tiem-
po. Generalmente esta enfermedad aparece cuando la planta está cargada con fruta. Actualmente es importante su control observándose ataques intensos y severos en algunas situaciones.

Control. Generalmente el inóculo inicial se da a través de la semilla por lo que debe usarse semilla confiable. La aplicación de fungicidas, debe ser realizada antes de que aparezcan los síntomas sobre todo con el cuajado de la fruta. Los fungicidas a base de clorotalonil y mancozeb, pyraclostrobin, pyraclostrobin + boscalid y flutriafol dan buenos resultados en condiciones de invernáculo. La solarización del suelo ayuda al control. También existen cultivares de tomate que son resistentes a esta enfermedad.

Phytophthora infestans

Tizón tardío

Esta enfermedad no es importante en invernadero. Se le ha detectado muy pocas veces y en zonas cercanas o linderas con cultivos de papa. Este hongo ataca todas las partes vegetativas y reproductivas de la planta. Al principio aparecen lesiones indefinidas sobre las hojas que se agrandan y se vuelven marrón oscuro cubriendo toda la superficie de la hoja incluyendo el pecíolo. También ataca los tallos de la planta. Del lado de debajo de la hoja, se ve un moho blanquecino. Las manchas sobre la fruta son de un color oliva al principio hasta que después toma tonalidades marrones hasta que todo el fruto es invadido. En tiempo húmedo se observa a veces un moho blanco sobre la fruta. Tubérculos de papa contaminada sirven como fuente de reinfección al igual que las plantas abandonadas infectadas tanto de papa como de tomate. Las oosporas del hongo son importantes estructuras de supervivencia. Las esporas de este hongo pueden ser diseminadas por el viento hasta distancias de aproximadamente 50 kilómetros. A distancias cortas este hongo se disemina en gotas de agua o por el salpicado de la misma. Cuando la humedad relativa está por debajo del 95% las esporas pierden viabilidad. Para que la infección ocurra, las esporas deben aterrizar sobre un film de agua que debe estar siempre presente hasta que la infección ocurra. Los esporangios de este hongo germinan en 1 a 3 horas cuando la temperatura es menor a 21º C. La temperatura para la formación de zoosporas es de 12º C. Este hongo penetra la hoja a través de la cutícula y muy rara vez a través de los estomas. La temperatura óptima para el desarrollo de este hongo es de 21º C con una humedad relativa de 100% al atardecer. Los síntomas pueden aparecer en 5 días después de la inoculación si se dan las condiciones ambientales favorables.

Control. No plantar cultivos de papa cercano o lindero a tomate en invernáculo. Tratar de eliminar los restos de cultivo de papa. Aplicaciones de fungicidas a base de metalaxil o propamocarb tienen efecto curativo. Es conveniente aplicar en forma preventiva clorotalonil.

Phytophthora spp.

Pudrición de fruta y de raíces

Existen varias especies de *Phytophthora* que producen esta enfermedad entre las que se encuentran *P. Parasitica* Dastur; *P. Capsici* Leonian y *P. drechsleri*. En nuestras condiciones se identificó a nivel de género. Esta enfermedad es muy importante en invernáculos sobre todo después del trasplante si no se han tomado medidas de desinfección de suelo mediante la solarización o la aplicación de productos químicos. Se ve favorecida cuando la humedad es alta. Ataca no sólo tomate sino también otros cultivos como pimiento. Cuando ataca las raíces en las plantas recién trasplantadas, éstas se marchitan al principio como si presentaran falta de agua, pero con el tiempo la planta muere y anilla la parte inferior del tallo quedando de un color marrón oscuro. El sistema radicular queda de color marrón y se observa pudrición de raíces. Finalmente la planta muere. Ataca frutas sin madurar o maduras. A medida que el síntoma avanza, en la superficie de la lesión aparecen círculos concéntricos de color marrón oscuro (Fig. 20). En condiciones de alta humedad dentro del invernáculo, puede aparecer un moho algodonoso sobre las lesiones. El ataque en fruta se da generalmente cuando ésta toca el suelo en el orificio que queda en el plásti-
co negro que se usa como mulch donde se trasplanta el tomate. También se observan ataques cuando se acumula agua en los pliegues que forma el mulch producto del chorreado del agua cuando existen goteras en los techos del invernáculo o porque las líneas de goteros están en mal estado.

Estas especies de Phytophthora, son habitantes del suelo y producen enfermedad en condiciones cálidas y húmedas que son las situaciones que se dan posterior al trasplante en el verano o a fines de esta estación. Los esporangios no se forman a menos que el suelo esté húmedo y con una temperatura óptima de 21º C. Una temperatura de 27º C o algo superior es óptimo para el desarrollo de la infección y posterior pudrición. Los síntomas visibles de la enfermedad pueden aparecer dentro de las 20 horas. La podredumbre sobre la fruta se desarrolla rápidamente. Cuando la fruta está en tránsito, es conveniente que la temperatura se mantenga por debajo de 13º C para que no se manifiesten infecciones latentes. Este patógeno se dispersa por el agua.

Control. Tratamientos en base a metalaxil o propamocarb combinados con benomil o captan a la base del tallo de inmediato al trasplante producen muy buenos resultados, al igual que para controlar los ataques sobre la fruta. No es conveniente aplicar riegos en exceso sobre todo en suelos pesados. La presencia de agua en canteros o caminos dificulta mucho el control de la enfermedad. El manejo de las condiciones ambientales en el invernáculo es muy importante para lograr el control.

Phytophthora spp.

Muchas especies de este hongo pueden atacar las plantitas de tomate en la almaciguera. Los ataques se pueden producir cuando germina la semilla en pre-emergencia o posteriormente cuando la planta recién emerge a la superficie. Los ataques en post-emergencia se presentan como zonas acuosas y aparece como un «chupado» en la base de las plantitas (Figs. 21 y 22) que es característico de la enfermedad, matando la planta. La humedad del suelo cercana a la saturación estimula el crecimiento del micelio así como su reproducción. Algunas especies de Phytophthora como la *aphanidermatum*, son favorecidas por altas temperaturas (30º C o más) mientras que otras como *P. ultimum* y *P. debaryanum* son favorecidas por bajas temperatura (menores de 20º C) por lo que el ataque se puede dar en múltiples situaciones climáticas.
Control. Este tipo de hongo se debe controlar teniendo en cuenta prácticas culturales y aplicación de tratamientos químicos. En primer lugar, la semilla debe estar desinfectada o sea con aplicación de fungicidas. Se debe evitar el riego excesivo y utilizar turbas de buena calidad o mezclas desinfectadas con productos químicos y/o solarización para evitar el desarrollo de la enfermedad en las almacigueras. A su vez las bandejas donde se plantan las semillas deben ser ubicadas en lugares que no sean sombríos evitando las temperaturas extremas. Las bandejas deben quedar a nivel. Fungicidas a base de metalaxil o propamocarb mezclados con benomil o captan son muy efectivos para controlar esta enfermedad.

Sclerotium rolfsii
Marchitamiento

Los síntomas más comunes de esta enfermedad se observan en el tallo a nivel del suelo. En esta zona, esta parte de la planta queda de un color marrón oscuro y al final se anilla el tallo matando la planta. En condiciones de alta humedad, se desarrolla un micelio de color blanco algodonoso que cubre la lesión en los tallos y sobre los mismos su crecimiento es en forma radial. En estas zonas, se forman esclerocios de color marrón claro de 1 a 2 mm de diámetro sobre el micelio del hongo (Figs. 23 y 24). Este hongo sobrevive como esclerocios en el suelo y en restos infectados y es altamente saprófítico. Este patógeno es favorecido por altas temperaturas (entre 30 y 35°C) infecta a más de 200 especies de plantas y produce daños en la mayoría de las hortalizas. Se disemina por el agua que corre, por suelo infectado y por los esclerocios. Se le detecta principalmente en ataques en diciembre, a fines del ciclo de los cultivos. Es muy frecuente ver la enfermedad a campo en cultivares de tomate tipo perita. Tratamientos con fungicidas dirigidos a la base de la planta con flutolanil han dado buenos resultados. También hay resultados auspiciosos de control con el uso de *Trichoderma* que es un hongo benéfico.

Sclerotinia sclerotium
Moho blanco

Esta enfermedad es muy importante en los cultivos de tomate en invernáculo. Ataca el tallo principal o los secundarios comenzando en zonas donde hubo daños especialmente a nivel del suelo matando las plantas. Se desarrollan zonas húmedas al principio que posteriormente se vuelven marrón oscuro a negro. Se forma posteriormente un micelio blanco en el cual se observan los esclerocios sobre la superficie del tallo (Figs. 25 y 26) así como en la médula. Los frutos son también atacados y se forman esclerocios sobre ellos.

Este hongo sobrevive en forma de micelio en plantas vivas o muertas, pero la forma principal de sobrevivencia es como esclerocios que pueden vivir en el suelo por muchos años. Este patógeno requiere abundante humedad. Esta enfermedad se desarrolla fundamentalmente a bajas temperaturas (entre 15 y 21°C). La circulación pobre de aire dentro del invernáculo
y el incorrecto manejo de las plantas agravan la enfermedad.

Control. La desinfección de suelo mediante la solarización o la aplicación de productos químicos previo a la plantación del cultivo es importante para el control de la enfermedad. Otro factor es el manejo racional de la fertilización y desbrote de la planta para evitar concentraciones altas de humedad y conseguir rápido secado de la superficie. La eliminación de las partes afectadas constantemente, reduce el inóculo y por consiguiente la enfermedad. La aplicación de fungicidas en forma preventiva a base de iprodione y procimidone dan un buen control de la enfermedad.

Oidiopsis spp.
Mildiu pulverulento

Este hongo está muy difundido en los cultivos de tomate en la zona norte del país aumentando su incidencia y severidad de ataque por lo que los productores se ven obligados a tomar medidas de control. El síntoma aparece en hojas maduras (Fig. 27 y 28) como manchas cloróticas de alrededor de 1 cm de diámetro. Cuando la infección avanza, las manchas se juntan hasta que todo el folíolo colapsa. En la parte superior de la hoja, se forma como un polvo parecido a un talco que con el tiempo aparece de los dos lados de la hoja. La dispersión de esta enfermedad se da a través del viento. Peritecios de color negro con características globulares aparecen entre el micelio de color blanco. Los peritecios contienen ascos que en su interior tienen esporas que es como sobrevive el patógeno de un año para otro. Los conidios germinan cuando la humedad relativa está en un rango de 52 a 75% y la temperatura del aire es alrededor de 26º C.

Control. De acuerdo a las investigaciones que se realizaron en INIA Salto Grande, se logra muy buen control con tratamientos a base de Pyraclostrobin, Pyraclostrobin +
Boscalid, Flutriafol y azufre mojable. Se debe tener cuidado con las temperaturas altas o bajas al aplicar azufre debido a la posibilidad de producir daño en el cultivo. También el uso de desinfectantes de contacto como el Sporekill da muy buen control.

Pyrenochaeta lycopersici
Podredumbre corchosa de las raíces

A nivel del mundo es una enfermedad que se ha reportado asiduamente en cultivos de tomate en invernáculo. En Uruguay, es común encontrarla en invernáculos con muchos años de plantación. No se ha detectado que produzca problemas graves de baja de rendimiento o muerte de plantas. El primer síntoma visible que se observa es que las plantas aparecen poco vigorosas en áreas localizadas y el volumen radicular, se ve disminuido. Las raicillas se pudren y las raíces más viejas, muestran el típico síntoma corchoso seco con la corteza (Figs. 29 y 30) casi desprendida. Este hongo sobrevive en el suelo como microesclerocios. Tiene hospederos alternativos en otras hortalizas como pimiento, melón, y berenjena. La temperatura óptima de desarrollo de la enfermedad es entre 15 y 20° C.

Control. Es necesario como en el caso de otras enfermedades la desinfección del suelo previo a la plantación principalmente por la solarización y/o la utilización de productos químicos con características fumigantes.

Fusarium oxysporum f. sp. lycopersici
Marchitamiento

Hace muchos años esta enfermedad fue de las más destructivas en las zonas de producción de tomate en Salto y Bella Unión. En esa época se plantaba el tomate cuarentón de los cuales el productor hacía su propia semilla. Por supuesto que estos materiales no poseían resistencia a esta enfermedad.

El primer síntoma que se observaba sobre las plantas era el amarillamiento de las hojas más viejas que se veía de un solo lado (Fig. 31) en los folíolos. El amarillamiento tomaba toda la planta (Fig. 32) y en los momentos de más alta temperatura en el día la planta comenzaba a marchitarse y después se reponía hasta que llegaba un momento que toda la planta moría. Otro síntoma característico es el color marrón oscuro de los vasos que se observaba al cortar el tallo tanto a lo ancho como a lo largo (Fig. 33). El hongo se mueve a través del xilema. Este síntoma es determinante para la identificación de la enfermedad. La corteza del tallo no pre-
sentaba ningún síntoma. Se ha informado que existen tres razas fisiológicas de esta enfermedad siendo la raza 1 la más distribuida.

El Fusarium es una enfermedad de clima cálido más prevalente en suelos arenosos. El hongo permanece en el suelo por muchos años en ausencia de plantas de tomate como saprófita facultativo en raíces de plantas fibrosas y en malezas como Digitaria, Amaranthus y Malva. Como el hongo produce clamidosporas, puede sobrevivir y persistir indefinidamente en el suelo. La invasión a la planta, se da a través de heridas en las raíces o a través de la epidermis o pelos de las raíces. Las temperaturas de suelo y del aire en el entorno de los 28º C favorecen el desarrollo de la enfermedad. La virulencia del patógeno aumenta por el uso de nutrientes amoniacales y se ve disminuido por el uso de nitratos como fuente de nitrógeno. La diseminación de la enfermedad se da a través de la semilla, suelo y plantas infectadas. Semillas de plantas infectadas, pueden contener un 3% de semillas con el patógeno. A veces se ha detectado el hongo debajo del saco de la semilla.

Control. El uso de cultivares resistentes a las razas 1 y 2 evita la infección con este hongo, por lo que en la actualidad este hongo no es problema en las zonas de producción. La desinfección de suelo previo a la plantación tanto por solarización y/o por tratamientos fumigantes es muy importante. Evitar llevar plantines infectados a campos sanos. Rotaciones de varios años con otros cultivos ayuda a la reducción y eventualmente a la eliminación del inóculo de esta enfermedad. Los tratamientos con productos químicos posterior a la infección no controlan el patógeno.

Fusarium oxysporum
Pudrición de raíces y de la corona

Los síntomas producidos por este Fusarium son diferentes a los producidos por F. oxysporum f.sp. lycopersici. Este hongo penetra los tejidos de las raíces a través de heridas causadas por las raíces secundarias y adventicias emergentes, por lo que se produce una lesión de color marrón que se extiende al sistema vascular (Fig. 34). El síntoma en los vasos alcanza a unos 20 cm por encima del nivel del suelo. Las plantas infectadas marchitan en los días soleados y...
hasta mueren después de repetirse varias veces el marchitamiento. Lo primero que se observa, es un amarillamiento a lo largo de las márgenes de las hojas más viejas que posteriormente mueren. Se pueden producir lesiones necróticas sobre el tallo por encima o por debajo del nivel del suelo.

En condiciones de alta humedad, se puede observar esporulaciones del hongo sobre estas lesiones. En la zona norte del país se le ha observado en algunos casos a nivel de síntoma pero no está muy diseminada. En otros países se ha identificado este hongo como forma específica radicis-lycopersici. En Uruguay esta forma ha sido reportada para la zona de Bella Unión.

Las clámidosporas en el suelo sirven como fuente de inóculo para infectar nuevos cultivos. Los microconidios de este hongo se encuentran comúnmente en el aire en los invernáculos infectados. Esta enfermedad, es favorecida por temperaturas frescas en el suelo (20-22º C).

Control. La medida más eficiente para el control de esta enfermedad es la desinfección de suelo mediante la solarización o la solarización en combinación con productos químicos fumigantes previo a la plantación del cultivo. No existen cultivares de tomate disponibles con resistencia a esta enfermedad aunque por información obtenida se están desarrollando.

ENFERMEDADES CAUSADAS POR BACTERIAS

Clavibacter michiganensis subsp. michiganensis

Cancro bacteriano

Corynebacterium michiganensis

Nomenclatura anterior

Esta enfermedad es una de las más importantes que afectan los cultivos de tomate en invernáculo en la zona norte del país. Las plantas pueden ser atacadas en cualquier estado de su desarrollo. Los primeros síntomas de la enfermedad, son la necrosis marginal de los folíolos en forma unilateral (Fig. 35) que a su vez se tuercen hacia arriba como si se enrollaran. Las hojas más viejas son las primeras afectadas aunque si la infección comienza en una herida la enfermedad puede desarrollarse en las partes superiores de la planta. Los tejidos vasculares al principio toman un color amarillento que posteriormente se vuelven de color marrón.

La corteza del tallo además se desprende fácilmente. Los síntomas aparecen más rápido en las plantas jóvenes que en las adultas. En la fruta aún inmadura se observa la clásica mancha de «ojo de pájaro» (Fig. 36) de alrededor de 4 mm de diámetro. En condiciones de invernáculo, es raro observar síntoma en fruta. Sin embargo en los cultivos de tomate en quincho era muy común detectarlo. La planta al final muere (Fig. 37).

Esta bacteria queda en el suelo sobre restos de plantas infectadas o plantas aban-
las manos de los trabajadores en las operaciones comunes de desbroce, deshoje y cosecha. La bacteria puede sobrevivir en ausencia de plantas de tomate sobre y en la semilla. En el suelo, sobrevive de 2 a 5 años. La diseminación en distancias más largas, sucede a través de las semillas y las plantitas de tomate infectadas. El rango de temperatura entre 24 y 32 º C es el ideal para el desarrollo de la enfermedad.

Control. Las medidas más efectivas de control son aquellas que reducen el inóculo inicial como lo son la adecuada rotación de cultivos, erradicación de malezas del grupo de las solanáceas y el uso de semilla libre de la enfermedad. No se conoce hasta el momento tratamientos de desinfección de suelo que tengan un comportamiento consistente y sustentable salvo la solarización que la disminuye. El bromuro de metilo no controla la bacteria. La semilla puede ser desinfectada con agua caliente a 55 º C durante 30 minutos aunque se debe ser muy cuidadoso en el tratamiento para evitar daño a la viabilidad de la semilla aunque se supone que la semilla comprada no debería ser portadora de la bacteria. Se debe evitar que las plantitas de tomate en el invernáculo estén mojadas cuando se hacen las tareas de manejo. La aplicación de productos a base de cobre regularmente, evita la diseminación de la bacteria. No se conoce resistencia a esta enfermedad.

Ralstonia solanacearum
Marchitamiento bacteriano

Pseudomonas solanacearum
Nomenclatura anterior

Esta enfermedad se la encuentra en algunos invernáculos de la zona norte del país, en lugares donde se cultivó papa anteriormente estando además diseminada por diferentes zonas. Los primeros síntomas que se observan, son el marchitamiento de las hojas más jóvenes. En las horas de máxima temperatura durante el día la planta queda marchita en su totalidad manteniendo todo el foliaje verde (Fig. 38). En dos o tres días muere. El sistema vascular de la planta al principio aparece de un color amarillento para posteriormente tornarse marrón oscuro con el avance de la enfermedad. Cuando el síntoma está muy avanzado, la médula y la corteza también quedan de color marrón. Una prueba que ayuda a identificar la enfermedad es cortando un tallo afectado y poniéndolo en agua, en un corto tiempo, apa-
INIA SALTO GRANDE
ENFERMEDADES DE TOMATE EN INVERNADERO

La bacteria sobrevive en el suelo durante largos períodos incluso sin las plantas de tomate presentes. Esto depende de la variedad del patógeno y de las características físicas, químicas y biológicas del suelo. Los suelos que eliminan fácilmente al patógeno o que favorecen a los organismos antagónicos son desfavorables para el patógeno.

Esta bacteria entra en las raíces a través de heridas causadas por el trasplante u otros lideros. Una vez dentro, el patógeno se localiza en el sistema vascular donde se multiplica rápidamente. La bacteria se desplaza a través de los espacios intercelulares de las células del parénquima, desintegra la médula y produce cavidades que se llenan con la masa bacteriana. El marchitamiento aparece entre 2 y 5 días después de la infección, dependiendo de la temperatura y la virulencia del patógeno. Cuando la planta está descompuesta, las bacterias son liberadas en gran número al suelo, donde son diseminadas por el agua con las partículas del suelo. Esta bacteria es susceptible a altas temperaturas (entre 30 y 35°C) y a bajas humedades.

Control. Una vez que el patógeno está establecido en un lugar, el control es muy difícil. La rotación tiene valor ya que hay algunos cultivos que no son hospederos. Tiene un amplio rango de huéspedes. El uso de bromuro de metilo y metan sodio no controlan la bacteria. La solarización reduce el ataque de esta enfermedad de acuerdo a la información que se obtuvo en ensayos realizados en INIA Salto Grande.

Erwinia carotovora subsp. carotovora
Pudrición bacteriana del tallo

Esta bacteria produce podredumbres blandas en muchos tipos de hortalizas. En condiciones de invernadero, se vuelve problemático el control de este patógeno según las condiciones ambientales. El ataque se da en forma localizada desintegrando la médula, produciendo un agujero que se observa cuando se corta un tallo (Figs. 40 y 41). El...
tallo queda húmedo y aceitoso. A veces la bacteria se desarrolla en la corteza del tallo que queda de color oscuro. Los vasos no se decoloran. Cuando el ataque avanza, la planta muere. A veces esta enfermedad es confundida con la médula hueca que corresponde a un problema fisiológico (Fig. 42).

Esta bacteria existe en todos los campos de producción de tomate y se ha encontrado en el intestino de algunos insectos que en algunos casos ayudan a diseminarla. La bacteria penetra por heridas y se necesita alta humedad relativa para el desarrollo de la enfermedad. Los frutos también pueden ser atacados produciéndose una podredumbre acuosa que a veces no se detecta en el campo pero sí en poscosecha.

Control. Es muy útil cortar y sacar fuera del invernáculo las partes atacadas. La aplicación de productos cúpricos en forma preventiva ayuda mucho para prevenir la enfermedad. Se deben hacer las tareas de conducción, desbrote y cosecha de fruta en lo posible con la planta seca para evitar la diseminación de la bacteria. Como en todas las enfermedades bacterianas, es importante la ventilación adecuada para evitar al máximo la presencia de agua sobre la planta. La solarización también reduce el ataque de esta enfermedad.

Pseudomonas corrugata

Necrosis de la médula

Esta enfermedad está muy difundida en los invernáculos de la zona norte del país. Al principio el síntoma producido por esta bacteria era confundido con *Erwinia carotovora* dada la descomposición de la médula que se observaba. También se encontró por otros investigadores que la *P. corrugata* puede producir pequeñas lesiones necróticas sobre la alfalfa e inclusive la han aislado de raíces sanas de esta especie. En los tallos se observan lesiones de color marrón oscuro y la médula se desintegra localmente quedando del mismo color (Figs. 43 y 44). Hay amarronamiento de los vasos en las zonas donde está presente el síntoma. El síntoma generalmente comienza en las zonas del desbrote sobre todo cuando el brote es demasiado grande dejando una herida de gran superficie donde la bacteria coloniza fácilmente. Incluso al sacar los brotes grandes, en algunos casos existe desprendimiento...
to de la epidermis lo que agrava más la situación. También se observan síntomas en los folíolos de las hojas así como en el raquis que al principio toman color amarillo y posteriormente negro. La planta marchita y muere cuando el ataque avanza. Según estudios realizados, la distribución de la enfermedad dentro del invernáculo, es altamente dependiente de la existencia de plantas enfermas en las cercanías. La enfermedad, en general se observa que comienza en zonas donde hay goteras en los techos, formando charcos de agua sobre el mulch (Fig. 45) y/o áreas sujetas a salpique lo que es exacerbado bajo condiciones de alta humedad y presencia de agua sobre la superficie de las plantas. Otra conclusión que se obtuvo es que la enfermedad se difunde a lo largo en la hilera.

Xanthomonas campestris pv vesicatoria
Mancha bacteriana

Esta enfermedad se observa todavía en cultivos de tomate y pimiento cultivados en el sistema de quincho, siendo difícil encontrarla en invernáculos, salvo que el nylon sea destruido por tormentas. Los productores están plantando en la primavera y verano tomate y pimiento a campo por lo que los cultivos están expuestos a esta enfermedad. Se padecen ataques intensos y severos.

Ataca hojas, tallos y frutas (Figs. 46, 47 y 48). Los tallos son un poco menos susceptibles que los otros órganos de la planta. Las manchas en las frutas comienzan como puntos negros algo levantados rodeadas de la susceptibilidad a la enfermedad al igual que noches con bajas temperaturas y alta humedad.

Control. Es necesario realizar los desbrotes en los momentos adecuados, no dejando que sean muy grandes para retirarlos. Si los brotes se sacan ya grandes es conveniente hacer un corte a bisel para que el agua resbale sobre las heridas y no quede detenida.

Los operarios deben desinfectarse las manos (con alcohol 70) al menos entre fila y fila para disminuir la diseminación de la enfermedad. También es importante trabajar en lo posible cuando la planta está seca, por lo que el correcto manejo de las cortinas en el invernáculo al igual que la presencia de ventilación cenital favorece el control de esta enfermedad. Las aplicaciones de productos cúpricos en forma regular ayudan al control. La excesiva fertilización nitrogenada y sobre todo con fuentes amoniacaales aumenta...
INIA SALTO GRANDE

ENFERMEDADES DE TOMATE EN INVERNADERO

un borde aceitoso pudiendo aumentar hasta que el fruto madure. Las manchas más viejas alcanzan hasta casi 1 cm de diámetro. Generalmente el centro de las manchas cuando el síntoma está muy avanzado se desintegra y se hunde. Las manchas son superficiales y no penetran a la cavidad donde se encuentran las semillas. Las manchas sobre las hojas son pequeñas de color negro y algo angulares siendo su superficie algo grasienta y su centro es traslúcido.

Este patógeno puede vivir hasta 2 años en las semillas. No sobrevive mucho tiempo en el suelo, pero sí en restos de tomate contaminados y en algunas malezas. El inóculo inicial para el inicio de la enfermedad comienza desde la semilla. Los cotiledones, ya pueden estar contaminados cuando emergen. La bacteria entra a la planta además por las aberturas naturales como los estomas en las hojas, a través de heridas o abrasiones, los pelos de las hojas que se rompen provocados por vientos con lluvia y a veces partículas de arena que se mezclan con el viento. Los síntomas en tomate pueden aparecer a los 6 días de ser inoculada la bacteria cuando las condiciones son favorables. También el patógeno puede ser llevado de un lugar a otro al trasladar plantas infectadas. La dispersión a campo, se ve incrementada por el riego por aspersión, lluvias frecuentes, largos periodos de rocío y vientos fuertes con alta velocidad. Las hojas y frutos nuevos, son más susceptibles que los tejidos más viejos. Es favorecida antes y durante la inoculación por un 100% de humedad relativa por períodos de 24 horas o más y por temperaturas que fluctúan entre 23 y 35º C. Temperaturas nocturnas de 16 grados suprime el desarrollo de la enfermedad aunque haya durante el día temperaturas favorables.

Control. Utilizar semilla desinfectada para evitar el desarrollo de la enfermedad. La semilla puede ser tratada con agua caliente a 50º C durante 30 minutos. Se debe tener mucho cuidado en no sobrepasar la temperatura ni el tiempo del tratamiento. El agua caliente, controla el inóculo tanto adentro como en la superficie de la semilla. Se supone que las semillas compradas están libres de la enfermedad.

Evitar en las plantaciones a campo el riego por aspersión. Es conveniente la aplicación de productos cúpricos en mezcla con mancozeb en el caso de que haya cepas resistentes al cobre. Si las cepas no son resistentes al cobre, no tiene por qué utilizarse el mancozeb para el control de esta bacteria. El uso de streptomicina o materiales similares, no se recomienda por la rápida aparición de resistencia en la bacteria. Recuerde que en cultivos a campo es necesaria la aplicación de productos cúpricos desde que las plantas son pequeñas. Se ha informado por investigadores de otros países que la aplicación de productos con alta presión (300 psi) y alto volumen (1200-1400 l/ha) facilita la introducción de la bacteria en las hojas de tomate cuando están cerca de las boquillas de aspersión. Esto sucede cuando hay alta población residente de la bacteria sobre las hojas, por lo que es conveniente aplicar los productos cuando la planta esté seca para minimizar la probabilidad de que esto suceda. Existen algunas variedades que tienen cierta resistencia a esta enfermedad.

Pseudomonas spp.

Pequeñas manchas bacterianas

Esta enfermedad se observa a veces en condiciones de invernáculo. Se presenta sobre fruta como pequeñas manchas negras superficiales (Fig. 49) a veces de menos de 1 mm de diámetro. Son levemente levantadas. El tejido alrededor de la fruta madura lentamente o simplemente no madura. Las manchas más grandes se producen sobre frutos pequeños. En las hojas se observan manchas pequeñas de color oscuro (Fig. 50).

Figura 48.
A veces ocurren juntas y quedan coalescentes. También se pueden observar manchas sobre tallos y pecíolos.

Esta bacteria, sobrevive sobre restos del cultivo en el suelo de plantas enfermas y en las semillas. La infección ocurre a través de heridas que suceden debido al viento, lluvia y el movimiento de las plantas debido a prácticas culturales. Sólo los frutos inmaduros son atacados. La infección y desarrollo de la enfermedad es promovida por tiempo húmedo y frío o fresco. La enfermedad se desarrolla mejor a temperaturas entre 12 y 25º C, con una humedad relativa cercana al 80%. Los síntomas aparecen a los 3 a 5 días cuando las plantas permanecen húmedas después de la inoculación durante 24 horas.

Control. Utilizar semilla libre de la enfermedad al igual que trasplantar plantines sanos. No trabajar las plantas cuando están mojadas para evitar el desarrollo de la enfermedad. En cultivos a campo, no utilizar riego por aspersión. Las recomendaciones realizadas para controlar *X. campestris pv vesicatoria* son también válidas para esta enfermedad.

ENFERMEDADES PRODUCIDAS POR VIRUS

Peste negra del tomate

Es una enfermedad muy importante del cultivo de tomate y morrón en la zona norte del país tanto en invernáculo como en condiciones de campo llegando en algunos años a atacar plantíos enteros perjudicando al productor en el retardo y/o pérdida del cultivo. El trip es el insecto transmisor de la enfermedad. En las hojas nuevas se puede apreciar que se vuelven bronceadas al principio del ataque para posteriormente desarrollar numerosas manchas oscuras y pequeñas produciendo la muerte de esas zonas (Fig. 51). Si las plantas son infectadas cuando son chicas, quedan enanas, no producen fruta y si son atacadas cuando las plantas son más grandes producen fruta pero con los característicos anillos de halos cloróticos de hasta 1 cm de diámetro (Fig. 52). En plantas adultas las hojas manifiestan un color violáceo típico (Fig. 53).

El rango de huéspedes de este virus es muy amplio incluyendo 168 especies de plan-
tas dicotiledóneas en 29 familias y 6 especies de monocotiledóneas en 5 familias. Más de 100 de los hospederos conocidos corresponden a las familias de las Solanaceae, Compositae y Leguminosae. Hay hortalizas que son hospederas de este virus tales como el tomate, papa, pimiento, apio, berenjenas, leguminosas y la lechuga. Además hay plantas ornamentales anuales y perennes que se agregan a la lista anterior.

Este virus es muy inestable in vitro, es transmisible por la savia y existen varias razas en el mundo que pueden diferir en sus reacciones con los anticuerpos contra las partículas proteicas del virus. Está clasificado en un género específico denominado Tospovirus. Hay 9 especies de trips conocidas que transmiten en forma persistente. Los trips adquieren el virus en el estado larval y quedan infectivos después de pasar a adultos. Las especies de trips más difundidas que transmiten el virus son: *Thrips tabaci* Lind.; *Frankiniella schultzei* (Trybom); *F. occidentalis* (Perg), y *F. fusca* (Hind).

Adquieren el virus en alrededor de 15 minutos y la eficiencia de transmisión aumenta con el tiempo de alimentación del insecto sobre la planta. El ciclo comienza cuando un trip adulto pone huevos en una planta infectada. Al salir la larva del hueve, ésta se alimenta y adquiere el virus y después como adulto se alimenta en plantas sanas inyectando de esa manera el patógeno. Los síntomas aparecen alrededor de los 20 días después que se alimenta el trip sobre la planta. El virus no se trasmite por semilla.

Control. Cuando comienzan los ataques de la peste negra, arrancar todas las plantas infectadas y mantener libre de malezas dentro del cultivo y en los alrededores.

En las almaciguerras, se deben extremar cuidados para evitar ataques tempranos después del trasplante. Es importante la aplicación de insecticidas en forma rotativa de diferentes grupos químicos efectivos para el control de trips para evitar problemas de resistencia. La aplicación de insecticidas se debe realizar con pulverizadora neumática (comúnmente llamada «mochila motor») para lograr un buen mojado de la planta, dado que la mayoría de los insecticidas para el control de esta plaga actúan por contacto. El intervalo de aplicación de los insecticidas varía según las temperaturas. Entre 10 y 20º C, la longitud del ciclo de vida es entre 25 y 35 días mientras que entre 20 y 30º C el ciclo de vida se acorta entre 15 y 25 días. Por lo tanto, cuanto más alta sean las temperaturas más corto debe ser el intervalo de aplicación de insecticidas y se debe estar alerta. Se debe monitorear en lo posible la población de trips tanto en la planta como con trampas con adherentes de color amarillo y azul revisándolas una vez por semana. El estado más susceptible de este insecto es la larva. Los huevos son depositados en el tejido de la planta y las pupas se encuentran en el suelo, lo que dificulta su control.

La utilización de barreras rompevientos es muy importante para disminuir la diseminación de estos insectos desde campos vecinos.

Al finalizar los cultivos se deben eliminar los rastrojos, lo que ayuda a disminuir el reservorio de trips infectados con el virus que posteriormente pueden atacar nuevos
cultivos. En lo posible es muy importante dejar estas áreas sin plantar al menos durante 30 días, para cortar el ciclo de este insecto.

Es importante evitar la superposición de cultivos en las proximidades sobre todo cuando son secuenciales, siempre y cuando sea posible.

Si se compran plantines que sean de viveros confiables.

En este momento existen algunas variedades que tienen resistencia a la peste negra, las que pueden ser utilizadas para disminuir el problema del virus.

En algunas chacras de Bella Unión y Salto, el control biológico de trips a través de *Orius* spp nativo está dando buenos resultados. En Corrientes, Argentina, se están llevando a cabo experiencias realizándose liberaciones de este enemigo natural presentando resultados auspiciosos.

Virus del mosaico del pepino

El síntoma más característico producido por este virus es que los folíolos quedan como si fueran filamentos o cordones (Fig. 54). Estos síntomas a veces son transitorios apareciendo con gran intensidad en las hojas más nuevas mientras que las hojas de la zona media de la planta están normales. Las plantas cuando tienen ataque severo, presentan poca fruta de reducido tamaño y con la madurez dilatada. Este virus pertenece al grupo de los cucumovirus, tiene amplio rango de huéspedes, y hay muchas malezas que son reservorios de este patógeno lo que contribuye a su dispersión. Existen más de 50 especies de pulgones que son capaces de trasmitir este virus en una manera no persistente. Todos los instares de este insecto pueden adquirir el virus en un minuto pero su habilidad de transmitirlo es baja y se pierde con el tiempo. Este virus es muy fácil de ser transmitido mecánicamente pero como no es muy estable es más difícil que sea transmitido por los operarios cuando tocan las plantas. El virus no se transmite por semilla.

Control. Es importante la eliminación de malezas dentro y fuera del cultivo ya que este virus tiene muchos hospederos. La aplicación de insecticidas para controlar pulgones es necesaria. Conviene monitorear los pulgones con trampas pegantes de color amarillo y a su vez la planta.

Virus del mosaico del tomate

Este virus actualmente no es problemático ya que en general todos los cultivares de tomate son resistentes a la enfermedad. Los síntomas más característicos de este virus son zonas moteadas en las hojas de color verde oscuro. Las hojas a veces se pueden arrollar, reducirse en su tamaño y a su vez desarrollar malformaciones. Los síntomas varían en intensidad de acuerdo a la raza del virus, el cultivar, momento de infección, intensidad de luz y temperatura. Las altas temperaturas, enmascaran el síntoma sobre las hojas. La fruta en general no presenta desfiguraciones pero lo que sí se observa es una maduración despareja y una reducción en el tamaño y en el número. En plantas infectadas, la fruta puede desarrollar un síntoma denominado amarronamiento de la pared interna de la fruta que abarca el parénquima. Aunque este síntoma se atribuye también al incorrecto manejo del nitrógeno entre otros.

Este virus pertenece al grupo de los tobamovirus, es fácilmente transmisible por savia y es muy infeccioso y persistente. Se trasmite de planta a planta por las manos de los operarios, herramientas y ropa. El rango de huéspedes de este virus es muy amplio incluyendo muchas familias de las Solanáceas, Amaranthaceae y Chenopodiaceae. Sobrevive en la semilla, y restos de tomate en el suelo.
En los restos de raíces, el virus puede persistir por largos períodos.

Control. La utilización de cultivares resistentes es de primordial importancia. Es conveniente que los operarios tomen precauciones desinfectándose las manos al menos con un lavado de manos con agua y jabón para inactivar el virus.

BEGOMOVIRUS

Texto preparado por:
Ing. Agr., MSc. Diego Maeso, INIA Las Brujas.

En el año 2002 se determinó la presencia en invernaderos de tomate de los alrededores de la ciudad de Salto una nueva especie de mosca blanca para el país: *Bemisia tabaci*, la cual además de provocar perjuicios directos al cultivo, tiene la potencialidad de transmitir enfermedades ocasionadas por virus.

Desde hace algunos años se vienen observando síntomas en cultivos de tomate y morrón atribuibles a infecciones virales pero diferentes a las observadas normalmente, sobre todo en cultivos de tomate.

En mayo 2005 gracias a la intervención del Dr. Paul Vincelli de la Universidad de Kentucky, EE.UU., se avanzó en el conocimiento de los virus responsables de esos síntomas «nuevos» para la región. El Dr. Vincelli ajustó en INIA la detección de un nuevo grupo de virus para el país: los Begomovirus o geminivirus, a través de tecnologías moleculares (reacción de PCR). La posterior intervención de la Dra. Judith Brown de la Universidad de Arizona, especialista en este grupo de virus, posibilitó acercarnos a la identidad del patógeno confirmando que no se trataba del virus de la cuchara aunque sí es transmitido por mosca blanca. En tomate, los síntomas que se observan son las hojas terminales deformadas y achataparradas y detención del crecimiento (Fig. 55). La fruta queda pequeña y se producen grietas y rajaduras (Fig. 56). En pimiento los síntomas se detectan en hojas nuevas donde se observan los bordes deformados y doblados hacia arriba y un moteado amarillento sobre la superficie. También se aprecia la formación de concavidades. Los frutos son un poco más pequeños y presentan algunas deformaciones.

En la zona de Salto, este virus se ha observado sólo en cultivos de tomate, siendo su diseminación amplia, aunque su incidencia es muy baja por el momento. En la zona de Bella Unión se le ha identificado sólo en cultivos de pimiento. La época más importante de aparición de síntomas hasta el momento es desde marzo a mayo.

Control. Es importante la erradicación de plantas infectadas y malezas, como a su vez el control de la mosca blanca. Las plantas atacadas en el caso del tomate, es conveniente arrancarlas ya que su crecimiento se detiene y la fruta no es comercializable. En pimiento, las plantas producen fruta que se puede vender aunque no arrancarlas puede producir en ambos casos la diseminación del virus.
Virus del rizado amarillo del tomate

Este virus está ampliamente distribuido en la zona del mediterráneo y otras partes del mundo. Ataca los cultivos de tomate, si bien infecta a otras especies que manifiestan síntoma tales como *Datura stramonium* y *Lycopersicum hirsutum*. En las plantas de tomate afectadas, se observa un amarillamiento de las hojas apicales, que además se vuelven filiformes y curvan sus bordes hacia arriba necrosándose en algunas ocasiones (Figs. 57 y 58). Los brotes apicales se arrepollan, se acortan los entrenudos y las plantas se enanizan a partir desde donde presentan las hojas con los primeros síntomas. Se pueden observar plantas totalmente amarillas con hojas acucharadas y de pequeño tamaño al lado de plantas más grandes que presentan los síntomas sólo en los brotes apicales. En plantas pequeñas no existen casi frutas, las cuales no alcanzan un calibre normal. Las plantas más grandes donde se observa el síntoma en la parte superior presentan los frutos de tamaño algo más reducido que en las plantas sanas y en la parte afectada, los frutos son muy pocos y de pequeño tamaño. **Este virus no se ha detectado en Uruguay todavía.**

Este virus se trasmite por la mosca blanca, *Bemisia tabaci* en forma no persistente circulativa perteneciendo al grupo de los geminivirus. Los síntomas después de la inoculación por el insecto, aparecen a los 15-20 días. Es suficiente que este insecto esté durante 15-30 minutos alimentándose en una planta infectada para adquirir el virus y en ese mismo tiempo es capaz de trasmitirlo. Después de adquirir el virus, existe un período de latencia de al menos 21 horas. La tasa de transmisión aumenta cuando se alarga el período hasta un máximo de 48 horas. El virus persiste en el insecto solamente de 10 a 15 días pero no durante toda la vida del insecto. No existe transmisión transovarial, o sea a través de la progenie de una hembra infectada. Lo que si sucede es que las larvas pueden adquirir el virus y transmitirlo cuando llegan al estado adulto. El virus no se trasmite por el contacto entre plantas enfermas y sanas. No se ha comprobado la transmisión por semilla ni otros insectos. Si se ha comprobado que el virus se transmite por injerto en plantas de tomate. En la zona de Almería en España, se observan invernáculos hasta con un 50% y u 75% de plantas atacadas.

Control. La erradicación de plantas infectadas y malezas, reducen significativamente la población de *B. tabaci* que pueda infectar la nueva plantación. No es fácil el control cultural, ya que según información de otros países, se han capturado moscas blancas a 16 kilómetros del punto de infección con los vientos predominantes. La infección de las plantas cuando son pequeñas reduce el rendimiento significativamente y a su vez aumenta la posibilidad de la dispersión del virus. El uso de mallas por debajo de 50 mesh en la producción de plantines ha dado buenos resultados en otros países. En lugares como Egipto que plantan en condiciones de campo la planificación de las fechas de plantación reduce la infestación por la mosca blanca. El objetivo de estas medidas es evitar la exposición de las plantas nuevas a altas poblaciones de mosca blanca.

Figura 57.

Figura 58.
El desarrollo de cultivares tolerantes a este patógeno es un paso muy importante en el control de esta virosis.
aloja en el tejido vascular y se alimenta. Ahí comienza a agrandarse y a formar los órganos reproductores. Esta larva muda nuevamente dando origen a la larva J₃ donde empiezan a diferenciarse los sexos y por lo tanto el dimorfismo sexual. Se produce una tercera muda dando lugar a la J₄ donde los órganos reproductores son perfectamente identificables. El macho sufre una rápida metamorfosis, sale de la cutícula larvaria y se forman adultos filiformes que abandonan la raíz e inician su ciclo de vida en el suelo donde fecundarán a las hembras. En algunas especies de Meloidogyne los machos escasean por lo que las hembras se reproducen partenogenéticamente. Las hembras adultas que también emergen de la cubierta larvaria, se siguen ensanchando, se vuelven globosas con un cuello de tamaño variable. En el interior de las hembras adultas, se forman huevos que una vez fertilizados, son depositados a través de la vulva en un saco mucilaginoso que se formó con anterioridad. Los huevos pueden ser depositados en la raíz o caer al suelo. Si las condiciones ambientales son favorables comienza el desarrollo embrionario, por lo que en caso contrario, los huevos entran en diapausa lo que les asegura la supervivencia de los mismos hasta que las condiciones sean favorables para su desarrollo. Las condiciones del suelo, influyen directamente en el desarrollo larvario.

En las raíces donde las larvas J₂ comienzan a alimentarse, se empiezan a producir cambios en la estructura de las células de las raíces que se aglutinan y fusionan entre sí por rotura y disolución de las paredes celulares formándose de este modo lo que se denomina células gigantes. El núcleo de estas células se divide varias veces sin que haya división citoplasmática, formándose células con muchos núcleos. Debido a estas irregularidades en la mitosis, se producen anormalidades en el número de cromosomas. Se produce además una hipertrofia y proliferación de las células de la epidermis y corteza de la raíz lo que da como resultado la formación de una agalla o nódulo que es el síntoma que se observa en las raíces. La formación de las agallas varía según la especie de Meloidogyne y el cultivo hospedero. En tomate las agallas o nódu-

Figura 59.
hembras y cuando el alimento es limitado las larvas evolucionan a machos. Cuanto más vieja son las larvas la infectividad es menor.

Muchos microorganismos del suelo pueden dañar bioquimicamente a los nematodos mediante la producción y liberación de metabolitos tóxicos. Esos microorganismos tienen origen en la descomposición de residuos vegetales y animales perteneciendo la mayoría al grupo de las bacterias.

La temperatura, afecta todas las etapas de desarrollo del nematodo, supervivencia e invasión de raíces. Hay especies adaptadas a climas fríos como *M. hapla* o a climas tropicales o templados como *M. incognita*, *M. arenaria*, y *M. javanic*.

Las condiciones óptimas para el desarrollo de estos últimos son temperaturas entre 15 y 30º C. Temperaturas por debajo de 5º C o por arriba de 35º C no son favorables para los nematodes.

Los nematodes necesitan un medio húmedo para moverse y desarrollar sus actividades sobre las raíces. La eclosión de los estadios juveniles está influída por la humedad del suelo. El contenido de humedad óptimo para los nematodes se encuentra entre el 40 y el 80% de la capacidad de campo. La excesiva sequía puede frenar o incluso matar a los nematodes. Los huevos de la mayoría de las especies sobreviven a la sequía ya que están protegidos por una capa mucilaginosa que los envuelve. Los nematodes son aerobios, por lo que si están sometidos a condiciones de inundación no es favorable para su desarrollo. Los organismos anaerobios segregan sustancias que pueden ser negativas para los nematodes.

El movimiento de los nematodes en el suelo, depende del diámetro de los poros y del tamaño de las partículas en el suelo. Se puede decir que el ataque de los nematodes es más severo y provoca más daño en suelos arenosos.

Variaciones del pH en el suelo entre 5 y 8 no tienen mucho efecto sobre estos organismos.

M. incognita produce nódulos en las raíces de las plantas de tomate evitando de esa manera la absorción de agua y nutrientes desde el suelo por lo que produce marchitez y amarillamiento de los bordes de las hojas reduciendo la producción del cultivo hasta que finalmente mata la planta. En cultivos de ciclo anual aún con suelos desinfectados, los ataques comienzan a partir de octubre haciéndose cada vez más severos a partir de noviembre y diciembre a medida que las temperaturas son más altas afectando paulatinamente el tamaño de fruta y el rendimiento. Cuando la desinfección del suelo no es suficiente tanto sea por el tratamiento utilizado o a veces por la incorrecta aplicación del tratamiento, los productores se ven obligados a cambiar el cultivo a mitad del año y a realizar nuevamente desinfección del suelo. Este tratamiento depende del cultivo que se trasplante posteriormente. Si se trasplanta Cucurbitáceas, los productores siempre desinfectan el suelo con algún producto químico.

Existe además una acción sinérgica de los nematodos con enfermedades producidas por hongos lo que provoca daños más graves que los provocados por cada agente por separado. El ataque de nematodos provoca cambios en la susceptibilidad de las plantas así como la ruptura de resistencia a los patógenos. El efecto positivo de los nematodos sobre la invasión de *Fusarium* en las raíces es un típico ejemplo de este tipo de asociaciones.

Las heridas producidas por los nematodos son también vías de entrada a virus y bacterias a los tejidos sanos de las plantas.

Control. Los nematodos cuando se establecen en un suelo, son muy difíciles de erradicar. Los productores en este momento deben a las exigencias de comercialización y de mantener siempre las chacras con cultivos produciendo les complica tener los invernáculos sin plantar. Debido a esta situación, la dependencia en la aplicación de productos químicos al suelo para desinfectarlo es muy alta. Esta situación trae como consecuencia que en suelos infectados, los nematodes siempre tienen hospederos para habitar lo que los ayuda a mantener su ciclo de reproducción.

La rotación de cultivos en el caso de *Meloidogyne* no es muy efectiva en los invernaderos ya que todos los cultivos que se rotan en mayor o menor grado son susceptibles. El morrón es el cultivo que tiene más
tolerancia a esta plaga. Un factor importante también es la eliminación de malezas ya que estos nematodos las utilizan como hospedero sobre las cuales sobreviven.

La utilización del barbecho para reducir la población de nematodos es una medida bastante efectiva en los países donde realizan cultivos a campo.

El uso de enmiendas orgánicas generan un efecto positivo en el control de nematodos debido a los subproductos metabólicos tóxicos generados en la descomposición de las enmiendas orgánicas y al aumento de organismos antagónicos a los nematodos que pueden ser hongos o bacterias que conduce a una reducción de los niveles poblacionales de nematodos en el suelo. Se ha constatado en estudios realizados en INIA Salto Grande que hay un aumento significativo de *Pseudomonas fluorescens* y *Bacillus* spp. cuando se agregan al suelo este tipo de materiales. El agregado de enmiendas orgánicas tiene el objetivo de aumentar el efecto supresivo de los suelos que está relacionado con la mayor actividad de microorganismos. Por lo tanto en el mediano y largo plazo se establece un equilibrio natural que favorece la flora benéfica. Los estiércoles frescos no son muy recomendables ya que pueden producir quemaduras en las raíces de las plantas.

Algunos productores en la zona de Salto utilizan todavía el bromuro de metilo para desinfectar el suelo debido a que la proporción de cultivo de tomate es muy alta (alrededor del 65 % a 70% con respecto a otros cultivos) siendo el tomate un cultivo de mucha susceptibilidad a los nematodos. Se están proponiendo nuevas alternativas químicas de productos al bromuro de metilo como el Inline (1,3 dicloropropeno 67%, cloropicrina 33%) y el Midas (Ioduro de metilo) que se están ensayando en algunas chacras problemáticas con ataque severo de nematodos. El Bromuro de metilo en el corto plazo es un producto que va a desaparecer del mercado ya que afecta la capa de ozono del planeta y existe un compromiso (Protocolo de Montreal) firmado por muchos países para eliminarlo, incluido Uruguay.

También se está recomendando por INIA Salto Grande, el uso del Metan Sodio en combinación con la solarización o la solarización sola según el grado de infestación de nematodos en el suelo. El agregado de enmiendas orgánicas tales como planas de pimiento verde (Fig. 60) de inmediato a la finalización del cultivo o plantas de maíz (Fig. 61) en combinación con la solarización, están siendo aplicados en Bella Unión como en áreas cada vez más extensas en Salto. La solarización (Fig. 62), de acuerdo a los
resultados obtenidos, se recomienda hacerla durante 30 días tomando el período desde mitad de diciembre hasta fines de enero que es donde se logran temperaturas más altas. Los resultados obtenidos con la solarización son muy auspiciosos. Mediciones de temperatura realizadas a 10 cm. de profundidad en el mes de enero alcanzaron a 67° C durante 6 horas en días soleados con el invernáculo cerrado y con nylon transparente de 35 micrones sobre toda la superficie del invernáculo. Esta temperatura es suficiente para lograr una baja importante en el número de nematodos y otros patógenos en el suelo como asimismo de malezas. Se debe tener presente, que en el suelo sin cultivo, se encuentran solamente larvas J2 y huevos. A su vez pierden movilidad y tienen menos capacidad infectiva. Todo este proceso, está influido por la temperatura. Los huevos de Meloidogyne, según datos obtenidos por otros investigadores, son más susceptibles en condiciones de suelo seco que en condiciones de suelos húmedos. A 40 °C en suelo húmedo, todos los huevos mueren en un período de 4 días mientras que en suelo seco tardan en morir entre 3 y 12 horas. Los huevos son más resistentes al calor que las larvas.

La resistencia de los cultivares de tomate contra Meloidogyne incognita se puede utilizar en la lucha contra los nematodos pero no es perfecta ya que la resistencia se rompe a temperaturas de suelo por encima de 27° C. La resistencia en los cultivares de tomate está ligada al gen Mi. A su vez, es difícil obtener una variedad con resistencia simultánea a varias especies de Meloidogyne.

Diagnóstico de campo y muestreo

Debido a su tamaño microscópico y su irregular distribución en el campo, muestras de suelo y de raíces se requieren para tener una idea de la población en el suelo por lo que la muestra a sacar debe ser representativa. El mejor momento para realizar el muestreo es al fin del cultivo de inmediato a su arranque. Es conveniente sacar 20 muestras al azar en cada lugar de muestreo (por ejemplo en cada invernadero) con un tubo cilíndrico o en su defecto usar una pala para sacar la muestra a unos 20 cm. de profundidad. Se descartan los 5 primeros centímetros del suelo previo a sacar la muestra. Después de tener el volumen de las 20 muestras, mezclarlas para posteriormente tomar una muestra de alrededor 1 kilo de suelo que es la que se manda a analizar. No sacar la muestra cuando el suelo está extremadamente seco o muy húmedo. También es necesario complementariamente después de haber realizado la última cosecha observar plantas al azar en la plantación para evaluar como está el estado de las raíces en referencia a la presencia de nódulos lo que se puede mapear para detectar que zonas son las más problemáticas.

Diagnóstico con plantas establecidas

Se deben sacar muestras de suelo con un tubo cilíndrico a 10 cm del tallo principal de las plantas y a una profundidad de 20 cm en el suelo de al menos 40 plantas de un invernáculo que se quiera analizar. Cuanto más nódulos hay en las raíces de las plantas, la población de nematodes es más alta. La presencia de 80-85 larvas J2 por 100 gramos de suelo se considera una población alta.

DESORDENES FISIOLÓGICOS DE LA FRUTA

Material preparado por:

Podredumbre apical

Síntomas

La lesión en el fruto comienza como un área verde-marrón claro (Fig. 63), evolucionando a colores más oscuros. Posteriormente, se produce una depresión seca y de un color negro-acartonado a medida que las células apicales de las frutas se van colapsando y descomponiendo (Fig. 64). Por otro lado, el síntoma de este desorden, puede
estar dentro de la fruta sin mostrar síntomas externos. En este caso se la puede reconocer, una vez que es cortada longitudinalmente, ya que presenta tejido oscuro o negro en el último cuarto de la parte terminal de la fruta. Los frutos con podredumbre apical maduran antes que los normales.

Causas

Este desorden fisiológico es debido a la deficiencia de calcio en la región más alejada de la fruta y puede ocurrir a pesar de un nivel alto en el suelo o aunque haya una correcta fertilización. El calcio es un nutriente poco móvil dentro de la planta. Lo hace únicamente por los vasos del xilema, lo que determina que una vez colocado en determinados sitios dentro de la planta no pueda redistribuirse a otras zonas con déficit. La transpiración de la planta es el mecanismo por el cual los nutrientes, y por lo tanto también el calcio, son llevados desde las raíces y distribuidos a los órganos en desarrollo de la planta, incluida la fruta. Como el agua es perdida por las hojas, en el proceso de transpiración, hay un «bombeo» natural y permanente. En cambio, la fruta transpira a un ritmo muy lento debido a la baja cantidad de estomas; por lo tanto cualquier estrés de agua en el suelo, una aplicación desbalanceada de cationes en fertirrigio, una alta salinidad en el suelo, un exceso de amonio, una baja demanda atmosférica, un daño en las raíces (nematodes, enfermedades, insectos, etc.) o cualquier otro factor que pueda interrumpir el flujo normal de calcio a la fruta puede causar esta deficiencia.

Control

El único método de control es preventivo. Se debe tener un seguimiento adecuado de la humedad y nivel de nutrientes en el suelo evitándose los excesos de nitrato de amonio y potasio. En suelos con bajo nivel de Calcio, y si el pH lo permite, se puede agregar dolomita. La aplicación de yeso (sulfato de calcio), puede corregir muy bien el aporte de calcio, cuando el pH está en el entorno de 7.

Niveles altos de salinidad, o conductividad eléctrica mayor a 3.5 μS/cm (alrededor de 2250 ppm de sales disueltas) en la solución del suelo, pueden inducir al estrés de agua en la planta en días totalmente soleados. Los resultados con aplicaciones foliares han sido muy erráticos, debido a que el calcio no se mueve de las hojas a la fruta. La demanda atmosférica (déficit de presión de vapor) debe ser la adecuada. Para esto hay que prestar atención a la ventilación del invernadero. Existen variedades más tolerantes que otras a la podredumbre apical.

Pared Gris, Gray Wall. Madurez despareja de la fruta

Este problema también es conocido como amarronamiento interno.

Síntomas

Se caracteriza por una maduración despareja. Aparecen áreas de la pared de la fruta donde no madura o lo hace más tarde que el resto que sí presenta maduración nor-
Causas

Este problema se asocia a condiciones frías, húmedas y puede empeorar en días nublados de baja intensidad de luz. Alta humedad en el suelo, niveles altos de nitrógeno y bajos en potasio pueden agudizar el problema, al igual que niveles bajos de materia orgánica en el suelo.

El pH por encima de 6.7 también puede incrementar este defecto. Como es obvio suponer, mientras las condiciones antes descriptas afectan individualmente la madurez despareja, una combinación de ellas la pueden agravar marcadamente. La pared gris es asociada a veces con síntomas de TMV (virus del mosaico del tabaco) aunque no se conocen evidencias reales en este aspecto. De cualquier manera plantas infectadas con este virus tienen mayor incidencia de este problema. Sin embargo, plantas resistentes a este virus también desarrollan este síntoma.

Control

Aplicaciones de potasio, más elevadas que las requeridas para obtener el más alto rendimiento, ayudan a reducir la incidencia de la madurez despareja. Si el problema aparece con buena intensidad de luz, se debe poner atención en reducir el nivel de nitrógeno y la humedad del suelo y a su vez aumentar el nivel de potasio.

Rajado de la fruta

Síntomas

Existen dos tipos de daño que pueden ocurrir en la fruta de tomate: 1. El rajado concéntrico que es la división de la epidermis de un modo circular alrededor de la inserción de la fruta al racimo. 2. El rajado radial que es la división desde los hombros hacia el ápice de la fruta (Fig. 68). Esta anormalidad ocurre principalmente próxima a la maduración en las variedades susceptibles. En cambio, las tolerantes, lo hacen cuando alcanzan la madurez muy avanzada. Existen variedades que son resistentes. Cuanto más temprano aparece el
rajado en la fruta, mas profunda y larga es la «herida». Los frutos con este problema, son más susceptibles al ataque de enfermedades como la Botritis (Fig. 69).

Algunos investigadores concluyen, que las características anatómicas más frecuentes asociadas al rajado son: frutas de tamaño grande, baja fuerza de tensión o baja extensibilidad de la piel en el estado rosado (etapas de maduración), piel fina, pericarpio delgado, pocas frutas por plantas y frutas expuestas al sol.

Causas

El nivel de susceptibilidad a este desorden depende de la resistencia y elasticidad de la epidermis. Las alteraciones en la tasa de crecimiento promueven este defecto. El crecimiento rápido de la fruta incrementa aún más la susceptibilidad. De este modo, plantas suculentas (con una fertilización alta en nitrógeno y baja en potasio) tiende a aumentar el problema.

Altas fluctuaciones de la humedad del suelo y la temperatura del ambiente ayudan a inducir el rajado. Las frutas que reciben la radiación solar directa, son más propensas que aquellas protegidas por el follaje. Esto es debido, probablemente, en respuesta a la mayor fluctuación de la temperatura de las frutas expuestas a la radiación solar.

El rajado concéntrico puede aparecer tanto en invernadero como a campo. En este último caso se lo ha visto asociado a lluvias intensas.

Control

Utilizar variedades más tolerantes al rajado. Medidas culturales que reducen este problema incluyen un manejo apropiado del agua de riego y un programa ajustado de la nutrición que no cause el desarrollo excesivo de la parte vegetativa de la planta. Evitar el deshoje y el ataque de enfermedades foliares que puedan causar defoliación por lo que las frutas quedan expuestas a la radiación solar directa.

Cara de gato

Síntomas

La cara de gato es una mal formación en tomate. Se observan cicatrices agrandadas, medianamente profundas, totalmente distorsionadas (Figs. 70 y 71) y de coloración marrón a negra, en la parte de abajo de la fruta. También se incluye en esta sintomatología cualquier agrandamiento o perforación en el área terminal de la fruta, a pesar de que muestre un aspecto normal.

Causa

La baja temperatura es uno de los factores que está más asociado con este defecto. Alrededor de las 3 semanas antes de la antesis, las flores son susceptibles al frío (temperaturas por debajo de 10 y 15º C durante la noche y el día respectivamente). Otros autores sostienen que cuando la temperatura está por debajo de 12 ºC y en con-
diciones de tiempo nublado durante la flora-
ción y cuajado puede inducir este defecto.
Cualquier falla de la polinización puede pro-
ducir deformación de la fruta con estas ca-
racterísticas. Las variedades de tamaño
grande de fruto, son mas propensas a sufrir
este desorden fisiológico en la época fría del
año. Bajo ciertas condiciones, la poda se-
vera en variedades indeterminadas puede in-
ducir a este problema al igual que el exceso
de nitrógeno.

Control

Al no ser viable económicamente el uso
de calefacción en nuestro país, hay poco
para hacer, excepto la utilización de varie-
dades más resistentes.

Quemado de sol

Síntomas

El quemado de sol ocurre en frutas ver-
des y maduras siendo las primeras más sus-
ceptibles cuando la radiación solar da direc-
tamente sobre las mismas por un período
largo. Las áreas afectadas pueden aparecer
blanquecinas, transparentes rugosa, hundi-
da y con paredes muy delgadas (Figs. 72 y
73). Un daño moderado puede no ser visto
durante la cosecha, pero, se vuelve noto-
rio una vez que avanza la maduración en
condiciones de poscosecha. Con frecuen-
cia el daño aparece en un lado o en la par-
te superior de la fruta. La zona con que-
mado puede ser colonizada por hongos
secundarios.

Causa

La radiación directa sobre la fruta resulta
en un incremento significativo de la tempe-
La temperatura por encima de 40º C sobre el pericarpio de la fruta produce el síntoma característico. El deshoje severo o la defoliación de la planta provocado por enfermedades o plagas foliares predispone a la fruta al daño.

Control

Una buena cobertura de hojas sobre los frutos es una forma muy efectiva de controlar este problema. Los termómetros digitales (ahora a precio muy accesible en nuestra plaza), que miden la emisión de radiación infrarroja de los cuerpos, pueden ser muy útiles para medir la temperatura de las frutas y una buena ayuda para ajustar el manejo.

En los bordes de los invernaderos, especialmente del lado norte y oeste, es conveniente poner malla sombra en las paredes.

Fruta hueca

Síntomas

Externamente, la fruta hueca aparece con caras planas separadas una de otra por bordes más o menos angulosos. Internamente, muestra cavidades vacías en uno o más lóculos y la pared externa de la fruta. El contenido gelatinoso, donde están embebidas las semillas, dentro de las cavidades, se reduce conforme desciende el número de semillas normales (Fig. 75). La fruta, obviamente, es menos densa y de menor peso que las normales.

Causa

Cualquier factor que contribuya a una mala polinización, fertilización o desarrollo normal de la semilla puede causar este desorden. Entre los factores que contribuyen a este defecto está la inapropiada fertilización (nitrógeno alto o potasio bajo), insuficiencia de luz y temperatura del aire alta o baja (mayor a 32 ºC o menor a 14 ºC). Algunas variedades son más susceptibles que otras. La utilización de auxinas (Tomatosa) para el cuajado de la fruta, frecuentemente agudiza el problema si se usan dosis más altas que las recomendadas.

Control

Utilizar variedades tolerantes y no sobreponerse en las dosis de nitrógeno y de hormonas aplicadas.

Tejido blanco interno

Síntomas

La expresión del tejido blanco interno varía ampliamente, dependiendo del cultivar y las condiciones ambientales. Algunas veces aparecen fibras blancas (Fig. 76) distribuidas en todo el pericarpio, pero lo más frecuente es encontrarlas en la pared externa de la fruta, donde varía desde pocos filamentos a una masa de tejidos muy duros difíciles de masticar. Algunas variedades son propensas a desarrollar esta anormalidad en el área de la placenta, próximo a los lóculos. Esta expresión puede ser muy variable entre las frutas de un mismo racimo.
Causa

El tejido blanco interno puede estar asociado a la aplicación de dosis baja de potasio y alta temperatura. Otras causas no han sido publicadas, pero el estrés ocasionado por un fuerte ataque de mosca blanca (*Trialeurodes vaporarion y/o Bemisia tabaci*) puede producir este desorden. En las plantas muy atacadas por moscas, a su vez, las frutas desarrollan colores rojo-anaranjada asociadas con bandas o áreas extensas de coloración amarilla en lugar de un rojo parejo y saludable. Algunas variedades son más susceptibles que otras.

Control

Un apropiado manejo de la nutrición, especialmente potasio, reduce el tejido blanco interno. Evitar los estrés, utilizar variedades tolerantes y controlar correctamente a la mosca blanca reduce este problema.

Deficiencia de magnesio

La deficiencia de magnesio se caracteriza por una clorosis intervenal de las hojas más viejas (Fig. 77), donde gradualmente, progresan hacia las más jóvenes. Las nervaduras principales permanecen verdes, en cambio las áreas intervenales pueden necrosar y colapsar. Algunos cultivares con carga alta de frutas, muestran síntomas de deficiencias en las hojas más viejas como resultado de la traslocación de Magnesio a las frutas en desarrollo. Dado que este elemento es el átomo central de la molécula de clorofila, dichas áreas amarillas no son capaces de realizar la fotosíntesis normal por lo que también pueden ser más fácilmente atacadas por *Botrytis*.

Durante la época fría del invierno, es necesario mantener cerrado los invernaderos, durante muchas horas al día. Esto ocasiona niveles altos de humedad relativa del aire, disminuyendo la transpiración de las plantas y en consecuencia la absorción de nutrientes desde la solución del suelo. Este descenso de la absorción de nutrientes también involucra al Magnesio. Para solucionar el problema, muchas veces, los productores incrementan únicamente la dosis de K, aumentando aún más el problema del Magnesio. Este desbalance originado, entre estos dos nutrientes, es el resultado del antagonismo que tienen sus iones con cargas positivas o del mismo signo Potasio (*K*+) y Magnesio (*Mg*²⁺).

Control

La aplicación foliar de sulfato de magnesio como máximo al 2% en forma frecuente, ha dado resultados satisfactorios.

Deficiencia de boro

El síntoma de deficiencia puede ocurrir tanto en la planta como en la fruta. En la planta se produce mayor fragilidad del foliaje, retorcimiento de las hojas más jóvenes, entrenudos cortos, problemas en la polinización y a su vez la planta detiene su crecimiento (Figs. 78 y 79). La deficiencia en fruta se manifiesta como áreas corchosas al-
rededor de la inserción de la misma, lóculos abiertos y maduración irregular.

El tomate es de tolerancia media al exceso de Boro en el suelo. Se han visto excesos por error en la fertilización con este elemento (Fig. 81). La toxicidad típica de Boro se manifiesta por los márgenes necrosados en las hojas viejas.

Control

Durante el período de deficiencia visible se pueden aplicar dosis de 100 g/1000 m² de ácido bórico por fertirriego de dos a tres veces por semana o a la dosis de 50 g/100 litros de agua en aplicaciones foliares semanalmente. La planta se recupera y crece normalmente (Fig. 80).

Exceso de nitrógeno

El nivel alto de nitrógeno en el suelo, produce excesivo crecimiento vegetativo (hojas muy grandes, «chupones» en las hojas, tallos gruesos y tabicados) (Figs. 82, 83 y 84), en detrimento del rendimiento y calidad de la fruta. Ésta puede adquirir colores no deseados, se vuelven huecas y de baja calidad. Las plantas, en general, al tener más brotación, son más susceptibles a enfermedades y plagas. Por otro lado, el exceso de amonio, muchas veces, provoca lesiones en el tallo, especialmente en invierno cuando la velocidad de nitrificación (pasaje de amonio a nitrato) es muy lenta.
Control

Se debe evitar el agregado en exceso de materia orgánica muy rica en Nitrógeno o de baja relación Carbono/Nitrógeno.

Deficiencia de potasio

La deficiencia típica produce la necrosis marginal de las hojas viejas. Esta necrosis es precedida por áreas cloróticas dispersas en el margen de las hojas, las cuales se van agrandando, colapsando y finalmente aparecen necróticas (Fig. 85). Si el estrés producido por la deficiencia de potasio continúa, avanza progresivamente a las hojas más jóvenes. Cuando la planta está cargada de fruta, el síntoma se acentúa como consecuencia de la traslocaión de potasio a las frutas en desarrollo. Si los síntomas aparecen en la etapa temprana del crecimiento de la fruta puede afectar severamente el rendimiento y calidad.

Los defectos en la calidad, asociados a este estrés de deficiencia, incluyen: fruta hueca, enfermedades asociadas a la maduración, ablandamiento, forma irregular y acidez de las frutas. Estos desórdenes pueden ocurrir en ausencia de síntomas foliares o reducción del rendimiento, lo que supone que en algunas circunstancias, los requerimientos de potasio para la mejor calidad de fruta es más importante que para el crecimiento vegetativo y máximo rendimiento.
LITERATURA CONSULTADA

ELAD, Y., ZIMAND, G., ZAQS, Y., ZURIEL, S., and CHET, I. 1993. Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathology. 42, 324-332.

Título: ENFERMEDADES DE TOMATE (Lycopersicum esculentum Mill.)
EN INVERNADERO EN LAS ZONAS DE SALTO Y BELLA UNIÓN

Autor: Roberto Bernal

Serie Técnica N° 181

©2010, INIA

Editado por la Unidad de Comunicación y Transferencia de Tecnología de INIA
Andes 1365, Piso 12. Montevideo - Uruguay
http://www.inia.org.uy

Quedan reservados todos los derechos de la presente edición. Esta publicación no
se podrá reproducir total o parcialmente sin expreso consentimiento del INIA.
Instituto Nacional de Investigación Agropecuaria

Integración de la Junta Directiva

Ing. Agr., Dr. Dan Piestun - Presidente
Ing. Agr., Dr. Mario García - Vicepresidente

MINISTERIO DE GANADERÍA
AGRICULTURA Y PESCA
REPUBLICA ORIENTAL DEL URUGUAY

Ing. Agr. José Bonica
Dr. Alvaro Bentancur

Ing. Agr., MSc. Rodolfo M. Irigoyen
Ing. Agr. Mario Costa
CONTENIDO

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>CONSIDERACIONES GENERALES</td>
<td>2</td>
</tr>
<tr>
<td>Cobertura de los invernaderos</td>
<td>2</td>
</tr>
<tr>
<td>Ventilación de los invernaderos</td>
<td>3</td>
</tr>
<tr>
<td>Importancia del déficit de presión de vapor y el punto de rocío</td>
<td>3</td>
</tr>
<tr>
<td>Algunos aspectos que predisponen a las enfermedades</td>
<td>4</td>
</tr>
<tr>
<td>Prevención, manejo y control de enfermedades</td>
<td>5</td>
</tr>
<tr>
<td>Hongos</td>
<td>5</td>
</tr>
<tr>
<td>Bacterias</td>
<td>6</td>
</tr>
<tr>
<td>Virus</td>
<td>6</td>
</tr>
<tr>
<td>Viroides</td>
<td>7</td>
</tr>
<tr>
<td>Mycoplasmas</td>
<td>8</td>
</tr>
<tr>
<td>Nematodes</td>
<td>8</td>
</tr>
<tr>
<td>Generalidades sobre el ciclo de vida de los nematodos</td>
<td>8</td>
</tr>
<tr>
<td>Tácticas de manejo integrado</td>
<td>9</td>
</tr>
<tr>
<td>ENFERMEDADES CAUSADAS POR HONGOS</td>
<td>10</td>
</tr>
<tr>
<td>Mancha gris de las hojas</td>
<td>10</td>
</tr>
<tr>
<td>Algunos aspectos del ciclo de la enfermedad y su epidemiología</td>
<td>11</td>
</tr>
<tr>
<td>Moho de la hoja</td>
<td>11</td>
</tr>
<tr>
<td>Mancha de la hoja</td>
<td>12</td>
</tr>
<tr>
<td>Moho gris</td>
<td>13</td>
</tr>
<tr>
<td>Tizón temprano</td>
<td>16</td>
</tr>
<tr>
<td>Tizón tardío</td>
<td>17</td>
</tr>
<tr>
<td>Pudrición de frutas y raíces</td>
<td>17</td>
</tr>
<tr>
<td>Marchitamiento</td>
<td>19</td>
</tr>
<tr>
<td>Moho blanco</td>
<td>19</td>
</tr>
<tr>
<td>Mildiu pulverulento</td>
<td>20</td>
</tr>
<tr>
<td>Pudrición de raíces y corona</td>
<td>21</td>
</tr>
<tr>
<td>Marchitamiento</td>
<td>21</td>
</tr>
<tr>
<td>Pudrición de las raíces y corona</td>
<td>22</td>
</tr>
<tr>
<td>ENFERMEDADES CAUSADAS POR BACTERIAS</td>
<td>23</td>
</tr>
<tr>
<td>Cancro bacteriano</td>
<td>23</td>
</tr>
<tr>
<td>Marchitamiento bacteriano</td>
<td>24</td>
</tr>
<tr>
<td>Pudrición bacteriana del tallo</td>
<td>25</td>
</tr>
<tr>
<td>Necrosis de la médula</td>
<td>26</td>
</tr>
<tr>
<td>Mancha bacteriana</td>
<td>27</td>
</tr>
<tr>
<td>Pequeñas manchas bacterianas</td>
<td>28</td>
</tr>
<tr>
<td>ENFERMEDADES PRODUCIDAS POR VIRUS</td>
<td>29</td>
</tr>
<tr>
<td>Peste negra del tomate</td>
<td>29</td>
</tr>
<tr>
<td>Virus del mosaico del pepino</td>
<td>31</td>
</tr>
<tr>
<td>Virus del mosaico del tomate</td>
<td>31</td>
</tr>
<tr>
<td>BEGOMOVIRUS</td>
<td>32</td>
</tr>
</tbody>
</table>

Ing. Agr. MSc. Diego Maeso, Ing. Agr. MSc Roberto Bernal

Virus del rizado amarillo del tomate
NEMATODOS .. 34
Nematodos formadores de nódulos en la raíz .. 34
Diagnóstico de campo y muestreo .. 38
Diagnóstico con plantas establecidas .. 38
DESÓRDENES FISIOLÓGICOS DE LA FRUTA .. 38
Ing. Agr. Héctor Genta
Podredumbre apical ... 38
Pared gris. Madurez despareja de la fruta .. 39
Rajado de la fruta .. 40
Cara de gato .. 41
Quemado de sol .. 42
Fruta hueca .. 43
Tejido blanco interno .. 43
Deficiencia de magnesio .. 44
Deficiencia de boro .. 44
Exceso de nitrógeno .. 45
Deficiencia de potasio ... 46
LITERATURA CONSULTADA .. 47
RECONOCIMIENTOS

A continuación se citan los investigadores que han aportado sobre la identificación, epidemiología y control de enfermedades en tomate.

Dr. Antonio Bello, CSIC, Madrid, España. Nematología.

Dr. Richard Berger, Universidad de Florida, Gainesville, Estados Unidos. Epidemiología.

Dr. Larry W. Duncan, University of Florida, Lake alfred, Estados Unidos. Nematología.

Dr. Andre Dusi. CNPH. EMBRAPA. Brasil. Virología.

Dr. A. Gamliel. Centro Volcani, Bet Dagan, Israel. Solarización.

Dr. Katsuto Kuniyasu, Estación Experimental Nacional de Tsu, Mieken. Japón. Enfermedades de suelo.

Dr. Joe Noling, Universidad de Florida, Lake Alfred, Estados Unidos. Nematología.

Dr. R. Rodríguez – Kabana. Universidad de Auburn, Alabama, Estados Unidos. Desinfección de suelos.

Dr. Paul Vincelli. Universidad de Kentucky. USA. Virología.

PRÓLOGO

El tomate es el cultivo más importante en invernadero en la zona norte de Uruguay. En esta área se produce mayormente para mercado interno durante un largo periodo que abarca principalmente desde marzo hasta fines de diciembre. Esta publicación presenta las diferentes enfermedades que se han detectado en esta zona con pautas de identificación, epidemiología, control y es el resultado de años de trabajo y de investigación con la colaboración de técnicos nacionales y extranjeros. Proporciona además descripciones y fotografías de las enfermedades y algunos desórdenes fisiológicos.

Ing. Agr. MSc. Roberto Bernal