

And

Congresso Brasileiro de Sistemas Integrados de Produção Agropecuária

Encontro de Sistemas Integrados de Produção Agropecuária no Sul do Brasil

1

CONFERENCE PROCEEDINGS

Volume 1

Bento Gonçalves (RS), Brazil

November 7th to 11th, 2023

And -

Congresso Brasileiro de Sistemas Integrados de Produção Agropecuária Encontro de Sistemas Integrados de Produção Agropecuária no Sul do Brasil

155

And

Congresso Brasileiro de Sistemas Integrados de Produção Agropecuária

Encontro de Sistemas Integrados de Produção Agropecuária no Sul do Brasil

254

Soil organic carbon stocks in crop/pasture sequences – results from the oldest long-termagricultural experiment in Latin America ¹

Raquel Santiago Barro², Valentina Rubio Dellepiane ³, Maria Virginia Pravia ³, Juan Andres Quincke, Kathrin Grahmann⁴, José A. Terra ³, Fernando Alfredo Lattanzi ³

¹ Part of the first author's postdoctoral work, funded by Agencia Nacional de Investigación e Innovación codePD_NAC_2016_1_134181

² Professor at Department of Agronomy- Universidade Federal de Viçosa, Brazil. corresponding author:raquel.barro@ufv.br

³ Instituto Nacional de Investigación Agropecuaria (INIA), Uruguay.

⁴ Leibniz Centre for Agricultural Landscape Research (ZALF), Germany

Abstract: The aims of this study were to assess the long-term effects of different CPR on SOCstocks on the subsoil, and to draw conclusions about the capacity of CPR to sequester C in Uruguay.We conclude that incorporating pastures in continuous crop sequences increased soilorganic carbon stocks through the soil profile by an average of 28%.

Key words: Sustainable agriculture; Soil bulk density; Equivalent soil mass, Forage legume;Mixed swards.

Introduction

Including pastures into crop-pasture rotations (CPR) is a management strategy that hasbeen widely proven to increase SOC stocks in the top soil (soilsrevealed.com). Far less studieshave evaluated the long term benefits of crop-pasture rotations (CPR) on SOC stock for the entire soil profile (Rumpel et al., 2015); none in Latin America (Terra & Prechac, 2006). Giventhe typical distribution of clay within the soil profile, subsoils often have a greater capacity to sequester organic carbon (Pravia et al., 2019), The aim of this study was to assess the long-termeffects of CPR with contrasting proportion of pasture on SOC stocks on the subsoil to draw conclusions about the capacity of CPR to sequester C in Uruguay.

Materials and Methods

The long-term experiment is located at the experimental station "La Estanzuela"

And

255

of the Instituto Nacional de Investigación Agropecuaria (INIA), in Southern Uruguay (34°20 S, 57°41W, 82 m.a.s.l.), in the Pampas and Campos Biome in South America. The experiment was established in 1963. A complete description of soil physico-chemical characteristics at the experimental site is provided by Grahmann et al. (2020). The main treatment characterization is presented on Table 1. Differences between CPR were the proportion of the sequence occupied by pasture phase, from 0 % (continuous annual cropping-CA) to 66% of the time with pastures(66%Past), and whether the pasture phase is 50% of the time of the CPR and included solely legume species (50%Lot) or a mixture of grass and legume species (50%Past).

Table 1. Crop-pasture rotation treatments for the Long term experiment in La Estanzuela, Uruguay. Cropping sequences are described as present in the fields in 2009, including agronomic adaptations since 1963.

AS*	Abbreviation	System description	Year of cropping sequence					
			1	2	3	4	5	6
1	CA0	Continuous annual cropping without fertilizer	Sorghum	Barley/Sunflo wer	Wheat	Repeated		
2	CA +	Continuous annual cropping with fertilizer	Sorghum	Barley/Sunflo wer	Wheat	Repeated		
6	CASoy	Continuous annual cropping with fertilizer	Barley/Sorg hum	Sunflower	Wheat	Repeated		
7	33%Past	66% Crops 33% Pasture (1 year RC)	RC	Barley/Sunflo wer	Wheat/RC	Repeated		
5	50%Past	50% Crops 50% Pasture (3 years F +WC +BT)	Sorghum	Barley/Sunflo wer	Wheat/Pastur e	3 years of Pasture		
3	50%Lot	50% Crops 50% Pasture (BT)	Sorghum	Barley/Sunflo wer	Wheat/BT	3 years of BT		
4	66%Past	33% Crops 50% Pasture (1 year RC, 3 years F + WC + BT)	Barley/RC	RC	Wheat/Pastur c	3 years of Pasture		
	AS: Agricultural System or original treatment number; F: tall fescue (Festuca arundinacea Schreb.), WC: White clover (Trifolium repens), BT: Birdsfoot trefoil (Lotus corniculatus L.)							

And

256

The soil profile was sampled in 2007 (block 1), 2008 (block 2) and 2009 (block 3). A single composite sample consisting of 6 soil cores of 4.2 cm diameter was collected per plot forfive depth increments: 0-10, 10-20, 20-40, 40-60 and 60-80 cm. Soil bulk density of each plotand depth was determined as the dry soil mass divided by sampled volume. Organic C concentration was measured by wet combustion with K₂Cr₂O₇ (Tinsley, 1967). The SOC stockswere determined for each rotation for the soil profile from 0 to 80 cm, summing up individual depths as the product of soil bulk density and organic C. SOC stocks were quantified at equivalent soil mass (ESM) following Ellert et al. (2007). We used the lowest soil masscriterium, which corresponded to the 50%Lot treatment.

Results and discussion

Figure 1 presents SOC stocks from 0 to 80 cm depth. The four CPR treatments always had higher values (P<0.10) than CA. CPR (67%Past, 50%Past, 50% Lot,33%Past) presented SOC stock values of 122.27 Mg ha⁻¹ compared to 87.53 Mg ha⁻¹ with continuous cropping (CA0, CA+ and CASoy). On average, it represents 28% more SOC stocks on CPR, compared to CA.

Figure 1- Soil Organic Carbon Stock (Mg/ha) in Rotaciones Viejas experiment after 35 years of establishment of the treatments, INIA-La Estanzuela Uruguay. Continuous annual cropping without fertilizer (CA0), CA with fertilizer (CA +), CA+ with soybean (CASoy), 66% Crops 33% Pasture

And ______ Congresso Brasileiro de Sistemas Integrados de Produção Agropecuária Encontro de Sistemas Integrados de Produção Agropecuária no Sul do Brasil

257

Increasing C inputs to the soil often increases SOC stocks (Fujisaki et al., 2018). Furthermore, besides representing the greatest land C sink in the biosphere, improving SOC isknown to improve soil structure, fertility and hence crop productivity (Lorenz & Lal, 2014). Therefore, CPR can play a central role to achieve sustainable intensification of agricultural systems in the Pampas.

Conclusions

Sequences that included pastures had on average 28% larger soil organic carbon stocksthan sequences that just had crops. A large part of this carbon was stored below 20 cm, particularly if pastures lasted two years or more. Thus, incorporating pastures in longterm continuous cropping sequences would provide a chance to sequester organic carbon.

Acknowledgements

Agencia Nacional de Investigación e Innovación (ANII) and National Institute of Agricultural Research (INIA), Uruguay for the postdoc PD_NAC_2016_1_134181. Research that supports the results presented in this publication was funded by INIAUruguay. We thank to the researchers and staff of INIA for the current maintenance and the conception and evaluation of the long-term trial.

References

Ellert, B.H., Janzen, H.H., VandenBygaart, A.J., Bremer, E., 2007. Measuring Change in Soil Organic Carbon Storage, in: Carter, M., Gregorich, E. (Eds.), Soil Sampling and Methods of Analysis. CRC Press, Boca raton, pp. 25–38.

^{(33%}Past), 50% Crops 50% Pasture (50%Past), 50% Crops 50% Lotus Pasture (50%Lot), 33% Crops 50% Pasture (66%Past). Differentletters indicate differences between treatments by Tukey test (P<0.05)

And

258

Fujisaki, K., Chevallier, T., Chapuis-Lardy, L., Albrecht, A., Razafimbelo, T., Masse, D., Ndour, Y.B., Chotte, J.-L., 2018. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agric. Ecosyst. Environ. 259, 147–158. https://doi.org/10.1016/j.agee.2017.12.008

Grahmann, K., Rubio Dellepiane, V., Terra, J.A., Quincke, J.A., 2020. Long-term observations contrasting crop-pasture rotations over half a century: Statistical analysis of chemical soil properties and implications for soil sampling frequency. Agric. Ecosyst. Environ. 287, 106710.

Pravia, M.V., Kemanian, A.R., Terra, J.A., Shi, Y., Macedo, I., Goslee, S., 2019. Soil carbon saturation, productivity, and carbon and nitrogen cycling in crop-pasture rotations. Agric. Syst.171, 13–22. <u>https://doi.org/10.1016/j.agsy.2018.11.001</u>

Rumpel, C., Crème, A., Ngo, P.T., Velásquez, G., Mora, M.L., Chabbi, A., 2015. The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. J. Soil Sci. Plant Nutr. 15, 353–371. https://doi.org/10.4067/S0718-95162015005000034

Terra, J.A., Préchac, F.G., 2001. Siembra directa y Rotaciones Forrajeras En Las Lomadas DelEste sintesis 1995-2000, 125th ed. INIA, Montevideo, Uruguay.