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A B S T R A C T   

Methods for accurately estimating within-field yield are essential to improve site-specific crop management and 
resource use efficiencies, which would be a major step toward sustainable intensification of agricultural systems. 
We set out to assess the accuracy of within-field soybean yields predicted by two data assimilation methods and 
to assess these methods’ assimilation efficiency (AE). Yields were estimated by assimilating remotely sensed leaf 
area index (LAI) data from Sentinel-2 into a soybean crop growth model on a pixel basis. The LAI data was 
integrated into the model by Ensemble Kalman Filtering (EnKF) or by recalibrating with the Subplex algorithm 
(recalibration-based). An open-loop setting which only integrates information on the soil layers was used as a 
baseline scenario for quantifying the AE. We assessed both data assimilation techniques on eight fields (3067 
pixels) in the Corn Belt region (Nebraska, Kansas and Kentucky) in the United States. The data set encompassed 
substantial variation in crop growth conditions: three growing seasons (2018, 2019 and 2020), rainfed and 
irrigated fields, and early and late planting dates. Ground truth yield acquired from combine monitors was used 
to validate the yield estimations. Agreement between predicted and observed yield at pixel level was two times 
higher for both data assimilation methods compared to the open-loop. The root mean square error (RMSE) was 
476 kg.ha− 1 (RRMSE of 10 %) in the recalibration-based method and 573 kg.ha− 1 (RRMSE of 12 %) in the EnKF- 
based method. For both data assimilation methods, assimilating the LAI improved predictions for 68 % of the 
pixels. For a further 12 % of pixels, there was no accuracy improvement. For the remaining 20 %, AE was positive 
for one of the two assimilation methods. The high proportion of pixels with positive AE indicates the potential for 
overcoming the limitations in applying crop models at high spatial resolution by integrating a crop growth in-
dicator. Assimilating an in-season indicator of crop growth (LAI) into a soybean model made it possible to adjust 
the simulation pathway, thereby greatly improving the accuracy of the yield estimations at the pixel level. This 
study elucidates the practical applications of data assimilation strategies for fine-scale within-field crop yield 
mapping.   

1. Introduction 

Spatially explicit crop yield data provides valuable information for 
decision-makers in various sectors, such as farmers, processors, crop 
insurance companies, and food trading agencies (Deines et al., 2021). 
Crop yield data is essential for site-specific crop management to improve 
resource use efficiencies toward sustainable intensification of agricul-
tural systems (Ittersum et al., 2013; Lobell, 2013; Maestrini and Basso, 

2018). Yield information is publicly available for various administrative 
levels, such as provinces, states, and countries, but yield information at 
the individual field level is rarely available to researchers (Sykuta, 
2016). Aggregated yield information is too coarse to reveal the 
within-field yield heterogeneity that needs to be known for site-specific 
management (Lobell, 2013). Although it used to be difficult and costly to 
collect high-resolution yield data, yield monitoring technology has 
made it feasible to measure fine-scale yield variability. However, 
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because of concerns about privacy, yield maps are rarely publicly 
available for research (Deines et al., 2021; Sykuta, 2016). Moreover, 
sophisticated yield monitoring technology is not yet universally used, 
and farmers typically invest little effort in collecting high quality yield 
data. For these reasons, developing robust methods for within-field yield 
estimation for large-scale applications remains a challenging task for 
agricultural research. 

Crop models are valuable because they describe the interaction be-
tween crop traits, management, growth, and environmental factors. 
They have the potential to improve crop management because they can 
take account of the effect of management decisions taken weeks or 
months earlier. Moreover, models estimate important crop variables 
(yield, total biomass, canopy N content, etc.) that are otherwise difficult 
to assess, and they can evaluate the impact of agro-management de-
cisions and weather conditions on these variables. However, using crop 
models at high spatial resolution to estimate within-field yield vari-
ability remains challenging (Deines et al., 2021; Hunt et al., 2019; Kayad 
et al., 2019; Novelli and Vuolo, 2019) because of the lack of 
high-resolution input data (i.e., soil parameters) required to run a crop 
model (Kasampalis et al., 2018) and models’ limited ability to simulate 
the impact of yield-reducing factors (weeds, pests, disease, etc.) that are 
often present in farmers’ fields. Biophysical crop variables derived from 
remote sensing provide spatial information on crop growth conditions 
which could overcome this challenge (Dorigo et al., 2007). In recent 
decades, a growing number of studies have investigated whether and 
how the incorporation of remotely sensed data into crop models can 
provide spatially explicit yield estimates (De Wit et al., 2012; Huang 
et al., 2019; Ines et al., 2013; Jin et al., 2018; Kang and Özdoğan, 2019). 

Leaf area index (LAI) is commonly used to link remote sensing and 
crop models as it has a clear connection with the crop model processes 
and directly affects simulated crop growth. Two types of approach have 
been used to link remote sensing observations with crop models: vari-
ational and sequential. Variational methods attempt to fit model simu-
lations to the observations by optimizing uncertain model parameters or 
initial condition. Sequential methods directly modify the state variables 
of the model based on the uncertainties relating to weighting the 
observed values and to the model simulations. The assumption under-
lying this method is that updating the model with observations at a 
certain moment in time will nudge the model toward the correct simu-
lation pathway, and consequently will result in better simulations. 

The increasing accessibility of high-resolution remote sensing prod-
ucts has enabled observations of biophysical variables to be integrated 
into crop models to produce fine-scale yield maps (Gaso et al., 2019, 
2021). However, due to the lack of spatially explicit ground truth data, 
model estimation of within-field yield variability has often been vali-
dated by aggregating fine-grained estimations to the field level for which 
yield data was available (Kang and Özdoğan, 2019; Sibley et al., 2014; 
Silvestro et al., 2017). When high-resolution yield maps are aggregated 
to field level, the yield estimates are usually more accurate than the pixel 
level assessments, as local errors partly cancel out (Deines et al., 2021; 
Peng et al., 2021). Therefore, reliable evaluation of the ability of data 
assimilation techniques to improve model estimation of within-field 
yield heterogeneity requires fine-scale (pixel-based) assessments. 

Another shortcoming in addition to the lack of reliable validation of 
simulated within-field yield variability is that only a few crops have 
been tested. Wheat and corn have mostly been used in studies for within- 
field yield estimation (Huang et al., 2019); limited work has been done 
for soybean. A recent study successfully applied the integration of LAI 
derived from Sentinel-2 into a soybean model for predicting within-field 
yield through a variational method (Gaso et al., 2021). That study 
highlighted that uncertainty in LAI simulations caused by the assimilate 
partitioning logic in the model adversely affected the accuracy of yield 
estimations. It was concluded that a sequential method that directly 
updates LAI from the remote sensing-based estimates could adjust LAI 
more efficiently and offer an alternative to reduce LAI uncertainty, in 
order to be able to more accurately predict within-field soybean yield. 

The study described here had two main objectives. The first was to 
assess the accuracy of predicting within-field soybean yield variability 
for several fields of soybean in the Corn Belt of the central US and to do 
so using Ensemble Kalman Filtering (EnKF) and a recalibration tech-
nique through the Subplex algorithm to assimilate remote sensing-based 
LAI into the soybean growth model as presented in Gaso et al. (2021). 
The second objective was to quantify the assimilation efficiency (AE) by 
comparing the accuracy of both data assimilation methods against the 
open-loop set-up. By so doing, we would provide insight into the effi-
ciency and reduction of errors that can result from assimilating 
Sentinel-2 derived LAI observations into a soybean crop growth model. 
We also wanted to assess the efficiency of using either a sequential or 
variational approach. 

2. Materials and methods 

2.1. Study sites and yield information 

This study involved eight soybean fields (total area 276 ha, 3067 
pixels) located in the Corn Belt region (Nebraska, Kansas and Kentucky) 
in the United States. Field size ranged between 16 ha and 85 ha. Six 
fields were rainfed, the other two were irrigated (Table 1). All fields 
were planted with genetically modified soybean varieties which had 
crop cycle lengths ranging from maturity group (MG) III to IV. Fields 
were managed according to optimal agronomic practices for the region, 
to minimize the influence of biotic stresses (weeds, insects, and diseases) 
and nutrient availability. The planting dates were within the optimal 
window for the region and ranged from the end of April to the beginning 
of June. In all fields, rows were 0.7 m apart. 

Yield data was collected using a yield monitoring system mounted on 
harvesting machines. The harvesting machines used varied, so a 
correction was applied by removing outliers on the basis of their fre-
quency and on the basis of the minimum and maximum biological yield 
limits (Sun et al., 2013). We calculated yield from the grain flow, 
harvester width, and the distance and time between consecutive 
geo-referenced points. We then averaged the geo-referenced points 
within each 30 × 30 m pixel. The number of geo-referenced points 
within each pixel ranged from 45 to 92, depending on the type of 
combine harvester. 

2.2. Crop growth model 

We used the soybean crop growth model presented in Gaso et al. 
(2021) as the starting point. This model applies the water use efficiency 
concept driven by crop transpiration and uses elements from existing 

Table 1 
Location of the study fields and soybean management.  

Field Geographic 
coordinates of 
field center 

Size Growing Planting Maturity Irrigation    

(ha) season date Group (mm)  
1 41.029◦ N, 

97.292◦ W 
85 2020 Apr 20 3.5 210  

2 41.013◦ N, 
97.278◦ W 

19 2020 Apr 20 3.5 210  

3 40.119◦ N, 
95.542◦ W 

21 2020 May 11 3 0  

4 39.975◦ N, 
95.525◦ W 

33 2020 Apr 23 3 0  

5 40.982◦ N, 
96.438◦ W 

42 2020 May 6 3 0  

6 40.012◦ N, 
95.478◦ W 

22 2019 Apr 25 4 0  

7 37.434◦ N, 
87.428◦ W 

38 2018 Jun 9 4.5 0  

8 37.443◦ N, 
87.438◦ W 

16 2018 May 26 4.5 0  
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models to describe the growth and development of soybean. The model 
has been found to perform well when describing soybean growth and 
yield under water-limiting conditions (Gaso et al., 2021). It requires 
specification of a limited number of parameters, which makes it 
attractive for data assimilation in large-area applications where infor-
mation on crop management and genotype parametrization is insuffi-
ciently detailed. 

We modified several important functions of the model, using the 
available information on soybean in the study area. Using information 
on soybean root growth velocity in the study area (Ordóñez et al., 2018), 
we modified the equation that described root growth to better represent 
soybean root exploration under the environmental conditions of the 
Corn Belt. To assess total root growth, we applied equal weights to 
in-row and central-row root elongation as obtained from the Ordóñez 
et al. (2018) equations. The root growth was set to cease at 828 ◦C days 
for the in-row position and slightly later for the central-row position 
(909 ◦C d), based on the information provided by Ordóñez et al. (2018). 

Soybean was planted in rows 0.7 m apart, which produces a so-called 
“clumped canopy” early in the season. This clumped canopy has a large 
impact on both light interception and transpiration. Canopy light 
interception in the original model is simulated by the standard Beer’s 
law equation, which produces overestimations in the heterogeneous 
canopy. We therefore decided to introduce a clumping factor to deal 
with this heterogeneous canopy early in the season. This factor plays a 
role when LAI is below four by reducing the light interception. For 
further details on the implementation of those modifications and on the 
parameter values used for the study region, see (https://github.com/dga 
so/Soybean_CornBelt). 

2.3. Spatial input data 

Daily weather data required by the model was retrieved from two 
sources: Daily Surface Weather Data (DAYMET) on a 1 km grid for North 
America (Thornton et al., 2020) and NASA Prediction of Worldwide 
Energy Resources (NASA-POWER). DAYMET provides gridded estimates 
of daily weather with higher resolution (1 km grid) than NASA-POWER 
(grid of 0.5◦ × 0.5◦ latitude and longitude). We downloaded weather 
data for the central point of each field. The minimum and maximum 
temperatures, vapor pressure, global solar radiation, and precipitation 
were acquired from DAYMET, the windspeed was obtained from 
NASA-POWER. In the case of irrigated fields, the amount of water 
applied at each irrigation event was added to the precipitation variable. 

Soil hydraulic properties were derived from the 30-meter probabi-
listic soil series map of the contiguous United States (Chaney et al., 
2016), hereafter referred to as POLARIS. POLARIS is an innovative 
database that provides fine-scale soil information; the data is freely 
available to be downloaded in tiles of 1◦ × 1◦ latitude and longitude. For 
each field, we downloaded the median values of sand, clay, and organic 
matter for each soil layer. The information on these layers was then used 
to compute field capacity and wilting point following the pedotransfer 
functions presented by Saxton and Rawls (2006). Since hydraulic 
properties were considered homogeneous throughout the soil profile, to 
obtain a unique wilting point and field capacity for the entire soil profile 
we computed an average weighted with the layer thickness. 

2.4. Remote sensing data 

All cloudless images from the two Sentinel-2 satellites (2A and 2B) 
Level 2A were used to compute the red edge chlorophyll index (CIred 

edge). The CIred edge was chosen because it is advantageous for LAI esti-
mation as it does not saturate at high-density canopies (Gitelson et al., 
2003). Using the publicly available Google Earth Engine (GEE) data 
archive, we retrieved CIred edge for the entire growing season of soybean 
in the Corn Belt (end of April to the beginning of October). Level 2 A 
information was not available for fields 7 and 8 (growing season 2018), 
so images were downloaded with the Sentinelsat API and the 

atmospheric corrections were carried out with the sen2cor tool. The 
CIred edge was computed for the time series of Sentinel-2 images using 
NIR band (Band7 in Sentinel-2, centered at 782 nm) and red edge band 
(Band5 in Sentinel-2, centered at 704 nm)(Eq. 1). These spectral bands 
of Sentinel-2 are equivalent to the spectral ranges used in the study of 
Nguy-Robertson et al. (2012) (red edge: 703.8–713 nm and NIR: 
771.3–786.3 nm).  

CIred edge = (Band7 in Sentinel-2 / Band5 in Sentinel-2) − 1                   (1) 

The number of cloudless images varies, depending on the field, as 
can be seen in Fig. 1. The CIred edge calculation and the downloading for 
the region of interest were done with the geemap package within the 
Python environment. The CIred edge was resampled to the spatial reso-
lution of the digital soil map from POLARIS (30 m). Using the GDAL-
Warp function from the GDAL library we resampled with the average 
method. The satellite-based estimates of LAI were derived from the CIred 

edge through a unified algorithm for soybean and maize (Nguy-Robertson 
et al., 2012). The algorithm used was developed on a system under 
maize–soybean rotation in Nebraska. Fig. 1 provides an overview of the 
number of Sentinel-2 images available throughout the soybean growing 
season. Green and red represent the average LAI for the pixels; the 10% 
highest and lowest yield whiskers indicate the range of LAI variability 
within these zones. The results reveal that in most fields, the lower yield 
zones have a lower average LAI. However, in many fields the difference 
is very small and the whiskers often overlap. Higher standard deviations 
in the lowest yielding zones indicate that in these pixels the crop growth 
was more heterogeneous. More importantly, the differences in the 
maximum LAI for each field indicate that the environmental conditions 
for crop growth varied greatly between fields. 

2.5. Data assimilation methods 

The two assimilation techniques we assessed in this study were a 
sequential method and a variational method. Both have been amply used 
to integrate an observed quantity of a state variable into a crop model 
(Jin et al., 2018). We compared the assimilation techniques against a 
baseline scenario, defined as the open-loop set-up. For the variational 
method, we used a recalibration procedure that calibrates uncertain 
model parameters by means of the Subplex algorithm (Rowan, 1990). 
We hereafter refer to this method as recalibration-based. In the case of 
the sequential method, we implemented the EnKF, which is widely used 
(Evensen, 1992) to sequentially update state variables of a system when 
a new observation becomes available. We hereafter refer to this method 
as EnKF-based. Both methods were implemented within the Python Crop 
Simulation Environment (PCSE); the biophysical variable assimilated in 
the crop growth model was LAI. 

The EnKF estimates the state of a system as the weighted average of 
the simulated state and the observed state, using weights derived from 
the uncertainties in the model and observations and expressing them 
through the Kalman gain. Uncertainties in the LAI observations were 
modeled in accordance with the error of the algorithm employed to 
predict LAI. This algorithm estimates the green LAI as a function of CIred 

edge with a root mean square error (RMSE) of 0.54 m2.m2, where 
maximum green LAI values are around 5.5 m2.m2 (Nguy-Robertson 
et al., 2012). Since the error in LAI estimates obtained from CIred edge 
increases with LAI, we decided to define the uncertainty in the obser-
vations as a proportion of the predicted LAI. We assumed the errors in 
LAI predictions to be non-systematic, and so the RMSE reported by 
Nguy-Robertson et al. (2012) was converted into a 10 % relative stan-
dard deviation. The leaf biomass state variable was also updated by the 
same proportion as the change in LAI, as both state variables are directly 
connected in the crop growth model through the specific leaf area (SLA). 
We decided to include the variables seed biomass and stem biomass, 
which are associated with LAI, in the state vector. This meant that the 
total aboveground production would then be updated as the sum of 
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changes in leaf, stem, and seed biomass. 
Our decisions on which parameters represent the uncertain part of 

the system were based on a sensitivity analysis performed with a 
variance-based method which assesses the response of the model output 
to the variations in the parameters. We used LAI as the target variable to 
assess model responses. The total variance in LAI was decomposed into 
fractions that can be attributed to a set of selected parameters. Four 
parameters were defined as the most uncertain part of the model 
(Table 2). These four parameters were modeled by Gaussian random 
variables with a mean equal to the default value and a standard devia-
tion that is unraveled based on plausible values for each parameter. 
Table 2 specifies the mean and standard deviation for each uncertain 
parameter of the model. The parameter distribution, defined by the 
mean and standard deviation, is then used to draw a random value. 
Samples of uncertain observed LAI were also drawn from a Gaussian 
distribution centered on the LAI predicted from CIred edge with a 10 % 
standard deviation. A schematic overview of the methodology can be 
found in Curnel et al. (2011). 

The number of ensemble members of the EnKF was set to 100, which 
has been reported as a good compromise between the minimization of 
the random component of the EnKF and the computational cost of the 
algorithm (Burgers et al., 1998). Since each pixel was considered as an 
independent observation, parallel processing is an obvious means to 
reduce the computational time. For this purpose, we used the multi-
processing package in Python. 

The second data assimilation scheme was a recalibration method. 

This method performs the analysis through the minimization of a cost 
function, which implies that uncertain model parameters must be 
recalibrated. For the recalibration, we used the Subplex procedure 
equivalent to the framework described in Gaso et al. (2021) through the 
NLOpt library. Our cost function concerned the RMSE of LAI. For further 
details of the recalibration with the Subplex algorithm, see Steven 
(2020). The uncertain model parameters chosen for recalibration are 
listed in Table 2. The implementation of the Subplex algorithm in NLOpt 
explicitly supports bound constraints. We used plausible values for the 
upper and lower bounds of the parameter chosen for recalibration. See 
Table 2. As the same set of uncertain parameters is considered in both 
data assimilation methods, the methods can be compared on the same 
basis. The open-loop runs used the mean value of each uncertain 
parameter (Table 2), which corresponds to the default value. 

2.6. Assimilation efficiency assessment 

We first evaluated the accuracy of the yield estimates from the two 
assimilation methods and compared this to an open-loop approach by 
standard error metrics, including the mean error (ME), RMSE, and 
relative RMSE (RRMSE). We then assessed the added value of both 
assimilation techniques by means of the assimilation efficiency index 
(AE, Curnel et al. (2011). The AE was computed from the relative ab-
solute error values estimated for the situation with (RAEDA, Eq. 2) and 
without assimilation (RAEOL, Eq. 3), as is formulated in Eq. 4. The 
relative absolute error (RAE) with assimilation uses simulations from 
EnKF-based or recalibration-based assimilation techniques (Eq. 2), 
while RAE without assimilation uses simulations from the open-loop 
situation (Eq. 3). The AE and RAE were computed for each pair of 
observed and simulated yield values, as is indicated with subscript j in 
Eqs. 2, 3, and 4. 

RAEDA(j) =
|Yobs(j)− YDA(j)|

Yobs(j)
(2)  

RAEOL(j) =
|Yobs(j)− YOL(j)|

Yobs(j)
(3)  

AE(j) = 100 ∗

(

1 −
RAEDA(j)

RAEOL(j)

)

(4)  

Fig. 1. Leaf area index (LAI) trajectory of the lowest and highest yielding zones of the fields as presented in Table 1: green dots indicate the 10% of pixels with the 
highest observed yield; red dots indicate the 10% pixels with the lowest observed yield. The number of available LAI values depends on availability of Sentinel-2 
images. Error bars show the standard deviation of the LAI for each category of observed yield. 

Table 2 
Selected uncertain model parameters and their mean and standard deviation 
values chosen as inputs for the EnKF, and the lower and upper bounds set for 
recalibration.  

ID Description Unit Upper 
bound 

Lower 
bound 

Mean SD 

LAIinit Initial leaf area 
index 

m2. 
m2 

0.34 0.1 0.22 0.04 

WUE Water use 
efficiency 

mbar 0.03 0.05 0.04 0.003 

FNTR Nitrogen 
translocated 

% 50 25 33 5.5 

RDMAX Maximum root 
depth 

m 1.5 0.9 1.2 0.1  
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where RAEDA(j) and RAEOL(j) represent the relative absolute error with 
and without assimilation, respectively, for the interaction (pixel) j. 
Yobs(j) is the observed yield, YOL(j) is estimated yield with open-loop 
settings in the pixel j, YDA(j) is estimated yield with data assimilation 
(EnKF-based or recalibration-based) in the pixel j, and AE(j) is assimi-
lation efficiency index in the pixel j. For the EnKF-based method, the 

estimated yield is the mean of the ensemble yields. 
For each of the study fields, we then computed the mean AE by using 

the Winsorized mean (Dixon and Yuen, 1974) of the total AE of the field. 
The Winsorized mean limits the effect of outliers, as it is the arithmetic 
mean after replacing the smallest and largest values. This method was 
chosen to avoid spurious outliers in the estimation of AE which could 

Fig. 2. Estimated yield compared with observed yield at pixel basis (aggregated to 30 m). RMSE_OL, RMSE_Recal, and RMSE_EnKF are the root mean square errors of 
the open-loop, recalibration, and EnKF, respectively. The numbers in parentheses are the relative root mean square errors expressed as percentages. 
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lead to unrealistic estimation of the mean AE values. The Winsorized 
mean was calculated with the Winsorize function from the Scipy library. 
The limits were set to the 0.1 and 0.9 quantiles. 

3. Results 

3.1. Evaluation of the yield estimates with the EnKF-based and 
recalibration-based techniques 

Our dataset of ground yield observations comprised a diversity of 
environments as a result of combinations of weather, soil, crop, and 
management. The open-loop simulations (scenario without assimila-
tion) captured the yield potential of the environment and ranged from 
~4000 kg.ha− 1 to ~ 6000 kg.ha− 1 (Fig. 2). The effect of a late planting 
date on the crop yield is apparent from the lower yields for fields 7 and 8 
as predicted by the soybean model (Fig. 2). Model overestimations with 
the open-loop simulations were consistent: the ME ranged from 513 to 
1240 kg.ha− 1 in seven of the eight fields. The exception was field 5, 
where ME was − 326 kg.ha− 1. 

Fig. 2 shows a persistent disagreement between observed yields and 
those obtained by the open-loop simulations that only take account of 
the soil data. The spatial yield variability was insufficiently represented 
by the open-loop simulations, as the within-field variability in the soil 
hydrological parameter values derived from POLARIS (see Figs. S1 to 
S8) do not match the spatial variability in crop yields. Across all fields 
except field 5, the open-loop runs presented a narrow range of vari-
ability, inconsistent with the within-field observed yields (Figs. 2 and 3). 
The overall ME, RMSE, and RRMSE of the simulated yields in the open- 
loop simulations were 704 kg.ha− 1, 901 kg.ha− 1, and 19 %, 
respectively. 

The EnKF-based and recalibration-based LAI data assimilations were 
able to reduce the RRMSE of predicted yields at pixel level for most 
fields, with one exception: the EnKF-based predictions in field 7 (Fig. 2). 
Across all datasets, the overall ME, RMSE, and RRMSE of the simulated 
yield in the EnKF-based assimilation method were − 213 kg.ha− 1, 
573 kg.ha− 1, and 12 %, respectively. The recalibration-based assimila-
tion method performed slightly better, with overall ME = − 63 kg.ha− 1, 
RMSE = 476 kg.ha− 1, and RRMSE = 10 %. The data assimilation 
methods performed less accurately in fields 6, 7, and 8, where due to the 
lack of cloud-free images less information was available for assessing the 
dynamics of crop senescence (fields 6, 7, and 8 in Fig. 1). 

Fig. 3 shows the simulated yield maps for field 1 (one of the irrigated 
fields). The potential yield obtained using the open-loop method was 
substantially higher than the observed yield. The simulated yield maps 
generated by both assimilation methods (Fig. 3a and b) partly repro-
duced the yield variation within the central pivot irrigated field, as can 
be seen by comparing the patterns of dark blue (low yields) and yellow 
(high yields) pixels in maps a and b with the observed yields in map d. 
The assimilation of LAI amplified the yield variation within the pivot. 

3.2. Assimilation efficiency assessment 

The AE index is an estimate of the average amount by which errors in 
estimated yield have been reduced. A positive AE indicates that the 
assimilation method enables improvement in yield estimates, while a 
negative value means that the errors in the estimated yield are higher 
than the situation without assimilation (open-loop simulations). In all 
but two cases, the mean AE value was positive across the study fields. 
The exceptions were for the EnKF-based method in fields 5 and 7 
(Fig. 4b). In field 5, open-loop simulations mostly overlap with the 

Fig. 3. Maps of observed and simulated soybean yield obtained using the EnKF-based, recalibration-based, and open-loop runs for field 1 with 944 pixels at 30 m 
spatial resolution. 
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simulations from LAI assimilation, which lead to extreme values for AE. 
It should be noted from the AE formulation that when RAEDA and RAEOL 
are low (as in field 5), AE index becomes extremely low or high, and 
consequently, the standard deviation is higher than in other fields 
(Fig. 4a and b). For 67 % of the pixels in field 7, the RAEOL (denominator 
in Eq. 4) is lower than RAEDA in the EnKF-based assimilation, resulting 
in an extremely low average AE value for this field: − 393 %. 

Assimilating LAI data resulted in an appreciable improvement in the 
accuracy of yield estimations: in six of the eight fields, the average AE 
exceeded 20 % (Fig. 4a and b). Overall, 68 % of the points (2071 pixels) 
had positive AE value in both data assimilation methods (Fig. 4c), while 
only 12 % of the points (362 pixels) had negative AE in both data 
assimilation methods. In the remaining 20% of the points, AE was only 
positive in one of the assimilation methods: see Fig. 4c. 

4. Discussion 

Using the recalibration-based and EnKF-based methods to assimilate 
LAI into a soybean growth model we were able to estimate within-field 
spatial variability in soybean yield with an average error of − 63 kg. 
ha− 1 (SD 547 kg.ha− 1) for the recalibration-based method and 
− 213 kg.ha− 1 (SD 532 kg.ha− 1) for the EnKF-based method. The results 
demonstrate that for all eight fields in our study, the LAI assimilation 
was able to reduce bias in the estimated yield compared to the open-loop 
scenario. Moreover, assimilating the LAI also improved the estimation of 
within-field variability of crop yield for both methods, the AE was 
positive in 68 % of the pixels but was negative in only 12 % of pixels. No 
improvement was apparent in field 5: here, the open-loop simulations 
are in the same range as the EnKF-based and recalibration-based simu-
lations. A plausible explanation is that in this field, the water stress (crop 
transpiration - potential transpiration) during the reproductive stage 
was substantially greater than in the other fields (see Figs. S9 to S16), 
which may have contributed to the limited success of LAI assimilation in 
nudging the model toward a more accurate simulation pathway. In the 
other seven fields, the success of the assimilation methods suggests that 
the impact of reducing and limiting factors not included in the simula-
tion model could be mitigated by LAI assimilation. Both data assimila-
tion techniques were able to improve the accuracy of yield estimates, but 
the recalibration-based strategy slightly outperformed the EnKF-based 
one, as the overall RRMSE was 10 % for the recalibration, 12 % for 
the EnKF, and 19 % for the open loop. 

The improvements in yield estimation obtained highlight the ability 
of the LAI assimilation to overcome the lack of spatial variation in soil 
properties and to capture the impact of yield-reducing factors not 
included in the model. This is supported by the observations that the 
impact of the LAI assimilation decreased when the model deviated from 
the LAI trajectory because there were insufficient images for the 
senescence period (Fig. 1). For instance, the differences in the senes-
cence rate of field 1 between zones in which yields varied (Fig. 1) 
accounted for the spatial yield variation in both data assimilation 

methods, which was in accordance with the observed yield variability 
(Fig. 2a). The lack of LAI observations during the senescence phase in 
fields 6, 7, and 8 (Fig. 1) was associated with lower accuracy in both data 
assimilation methods (Fig. 2f, g, and h). In the latter cases, the EnKF- 
based strategy was unable to directly adjust the model state during 
the senescence phase because there were too few observations, while the 
recalibration strategy could not accurately estimate the nitrogen trans-
location rate (FNTR, Table 2). 

These results agree with the findings from Silvestro et al. (2021), 
who demonstrated that the EnKF-based method was suitable for 
assimilating LAI into the SAFYswb model as it performed well when 
adjusting maize yield for field conditions. The results from Dhakar et al. 
(2022) and Kang and Özdoğan (2019) also indicate that assimilation of 
satellite-derived LAI estimates can be used to resolve yield variability 
within and between fields. However, these two studies also indicate that 
for the EnKF to perform well, it is crucial to have a carefully calibrated 
model. In particular, a bias in phenology simulations leading to a 
“phenological shift” (Curnel et al., 2011) will adversely affect the per-
formance of the EnKF. A similar concern applies to our study, as the 
yield formation by our model is simulated through partitioning func-
tions that are highly dependent on a correct simulation of crop 
phenology (Gaso et al., 2021). 

In this study, we demonstrated that the EnKF-based and 
recalibration-based strategies have similar performance in reducing the 
error of the simulated yield compared to the open-loop simulation. 
However, there are important differences between the two strategies. 
The EnKF directly adjusts the model state variables in order to improve 
the simulated yield. Although this strategy is effective and computa-
tionally efficient, it provides little insight into the drivers behind the 
within-field variability. The recalibration strategy has the advantage 
that it provides maps of adjusted parameter values which have a bio-
physical interpretation. For example, the LAIinit parameter (Table 2) 
can be interpreted as a low planting density that impacts the yield of 
soybean growing under low-yield conditions (Carciochi et al., 2019). 
Similarly, variations in water use efficiency (WUE, Table 2) and the 
percentage of translocatable nitrogen (FNTR, Table 2) point at de-
ficiencies in crop growth that could probably be tackled by adjusting 
crop management. 

An advantage of the EnKF over the current recalibration strategy is 
that the EnKF lends itself better to real-time inferences of crop status and 
yield estimation (Huang et al., 2019). Our recalibration strategy instead 
requires a full crop cycle to estimate the model parameters, so the 
strategy is only useful for retrospective analysis. However, given that the 
recalibration strategy has some advantages over the EnKF, we argue that 
extending the objective function with prior information on parameters 
would make the recalibration strategy more suitable for real-time in-
ferences too. It essentially becomes a 2DVAR algorithm, like the one 
used by Zhuo et al. (2022) to assimilate LAI for within-season estimation 
of winter wheat yields. 

Spatially explicit crop yield data is also an essential requirement for 

Fig. 4. Means (black dots) and standard deviations (vertical bars) of the assimilation efficiency index (AE) of (a) the recalibration-based method, (b) the EnKF-based 
method, for eight soybean fields. Field 7 was excluded from panel b for visualization (mean and standard deviation of AE of field 7 in EnKF were − 393 % and 675 %, 
respectively). Panel c represents the AE value of each method per pixel. Values within panel c are the proportion of pixels in each quadrant. 
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quantifying the within-field yield gap and targeting crop management 
actions to reduce that gap. Our results demonstrate that the assimilation 
of LAI estimates from Sentinel-2 observations can be used to estimate a 
spatially explicit yield gap, and that therefore this strategy has potential 
to assist in improving soybean crop management. The feasibility of this 
approach still needs to be tested over more years and regions, and the 
results need to be discussed with farmers to assess if they recognize the 
spatial variability in parameters and whether it can be related to man-
agement actions. 

One of the parameters in the model defines the percentage of 
translocated nitrogen that is clearly related to soybean nitrogen content, 
which in turn is related to soybean protein content (Cafaro La Menza 
et al., 2017; Ciampitti and Salvagiotti, 2018). It still needs to be 
demonstrated that such parameter maps can predict the spatial vari-
ability in soybean protein content. However, if the feasibility is 
demonstrated, a potential application is to use the parameter maps to 
plan differential harvesting of soybean (Kravchenko and Bullock, 2002). 
The study by Ciampitti et al. (2021) showed that high-yielding envi-
ronments rely more on soil N supply, and that in this situation 
within-field variability in protein content is more likely. Similarly, the 
meta-analysis by Assefa et al. (2019) found high variability in the pro-
tein content of soybean, which is an important issue for growers and 
industry. Thus, differential harvesting from the areas in the fields where 
soybeans have higher protein or oil concentrations would be beneficial 
for producers and buyers as it would allow produce to be graded more 
easily (William et al., 2020). 

Another potential application is to use the parameter maps to esti-
mate the spatial variability in the amount of N extracted from the sys-
tem. Soybean contributes nearly to 25 % of the total fixed N in 
agricultural systems (Herridge et al., 2008) where, on average, biolog-
ical N2 fixation represents 50–60 % of the crop N demands and the 
partial N balance (fixed N in aboveground biomass – N seeds) is negative 
in 80% of the cases (Ciampitti and Salvagiotti, 2018). Such partial N 
balance plays a major role in the sustainability of the agricultural sys-
tems. Estimates of the partial N balance could assist the development of 
variable rate fertilizer strategies that replenish nutrients in the agricul-
tural systems instead of fertilizing each individual crop. 

A prerequisite for successfully applying data assimilation is a model 
that is well calibrated, particularly for the phenological development of 
soybean. The phenology model used for this study (Setiyono et al., 2007) 
is a generic model based on the MG classification of the soybean variety. 
Although MG ratings of soybean varieties are not always well stan-
dardized, such models have demonstrated enough predictive ability to 
simulate phenology stages, as their accuracy was equivalent to the 
simulations based upon genotype-specific parameters (Salmerón and 
Purcell, 2016). Another study (Archontoulis et al., 2014) also showed 
the feasibility of obtaining accurate estimations of flowering and 
maturity stage by using generic parameters that depend on MG. Thus, 
phenological models that account for temperature and photoperiod in-
teractions throughout the crop cycle and that rely on the MG classifi-
cation and avoid dependency on genotype-specific parameters can 
predict soybean stages sufficiently accurately. Moreover, they are 
necessary to broaden the applicability of the crop simulation models. 

In addition to a calibrated model, satellite observations are required 
to capture the within-field spatial variability of soybean LAI. For this 
study the Sentinel-2 observations were resampled from 20 to 30 m to 
match the POLARIS digital soil map. However, Skakun et al. (2021) 
caution that a moderate spatial resolution (20–30 m) does not fully 
capture the within-field yield variability. They concluded that moving 
the spatial resolution from 3 to 30 m results in an important reduction of 
yield variance. Similarly, Yang (2020) concluded that a 30 m spatial 
resolution can be used for variable rate application task maps, but that 
5 m resolution imagery would be more appropriate for variable rate 
application in precision agriculture. Testing the technology developed 
with this study at such resolutions will make it even more useful for 
site-specific crop management. However, running a coupled crop 

model–data assimilation framework at such high spatial resolution is 
computationally daunting and will probably require techniques from 
software engineering and machine learning for deriving efficient meta 
models. 

5. Conclusions 

We have demonstrated that the assimilation of LAI derived from 
satellite observations into a soybean growth model led to improvements 
in the accuracy of yield estimations at pixel level. The recalibration- 
based approach slightly outperformed the EnKF-based one (RRMSE 
10% vs 12 %). Compared to the baseline scenario (open-loop settings), 
both data assimilation methods reduced the RMSE of yield estimates by 
an average of 42 %. Our study has demonstrated the impact of assimi-
lating LAI to compensate for the lack of spatially explicit input data and 
for growth-reducing factors not being accounted for by the model. 
Moreover, the quantitative assessment of the efficiency of assimilating 
LAI revealed an appreciable improvement in accuracy, which highlights 
the relevance of integrating a proxy for crop growth to adjust model 
simulations toward a correct pathway. Therefore, these results provide 
important insights to assist practical applications of the data assimila-
tion methods for obtaining high-resolution within-field yield maps for 
soybean. 
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