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ABSTRACT Plant breeders regularly evaluate multiple traits across multiple environments, which opens an
avenue for using multiple traits in genomic prediction models. We assessed the potential of multi-trait
(MT) genomic prediction model through evaluating several strategies of incorporating multiple traits
(eight agronomic and malting quality traits) into the prediction models with two cross-validation schemes
(CV1, predicting new lines with genotypic information only and CV2, predicting partially phenotyped
lines using both genotypic and phenotypic information from correlated traits) in barley. The predictive
ability was similar for single (ST-CV1) and multi-trait (MT-CV1) models to predict new lines. However,
the predictive ability for agronomic traits was considerably increased when partially phenotyped lines
(MT-CV2) were used. The predictive ability for grain yield using the MT-CV2 model with other agronomic
traits resulted in 57% and 61% higher predictive ability than ST-CV1 and MT-CV1 models, respectively.
Therefore, complex traits such as grain yield are better predicted when correlated traits are used.
Similarly, a considerable increase in the predictive ability of malting quality traits was observed when
correlated traits were used. The predictive ability for grain protein content using the MT-CV2 model with
both agronomic and malting traits resulted in a 76% higher predictive ability than ST-CV1 and MT-CV1
models. Additionally, the higher predictive ability for new environments was obtained for all traits using
the MT-CV2 model compared to the MT-CV1 model. This study showed the potential of improving the
genomic prediction of complex traits by incorporating the information from multiple traits (cost-friendly
and easy to measure traits) collected throughout breeding programs which could assist in speeding up
breeding cycles.
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Barley is the fourth most important cereal crop worldwide with an
annual production ofmore than 143million tons and ismainly used for
animal feed andmalting (FAOSTAT, 2019). Therefore, barley breeding
efforts have focused mainly on grain yield and malting quality traits
(Thorwarth et al., 2017). However, the collection of phenotypic data
such as malting quality traits in large-scale breeding programs is ex-
pensive and time-consuming. Additionally, malting quality traits (i.e.,
beta-glucan content, malt extract, soluble nitrogen, and protein con-
tent) are complex in nature, have quantitative inheritance, and are
evaluated mainly by seed destructive methods (Han et al., 1997;

Igartua et al., 2000; Gutiérrez et al., 2011; Nielsen et al., 2016). Although
there is an advancement in the high-throughput phenotyping tech-
niques, it is still expensive to evaluate complex traits such as grain yield
and malting quality traits with high heritability for a large set of geno-
types. On the other hand, the cost of genotyping is decreasing, allowing
to genotype a large number of lines at a very low cost. Therefore,
some commonly used breeding strategies to overcome the challenges
of complex traits is to use molecular markers (quantitative trait loci/
marker-trait associations/all genomic information) for predicting and
transferring these traits (Igartua et al., 2000; Schmierer et al., 2005;
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Lorenz et al., 2012; Sallam et al., 2015; Gutiérrez et al., 2015; Schmidt
et al., 2016; Nielsen et al., 2016; Lado et al., 2018).

The ultimate goal of plant breeding is to improve the genetic gain,
which is defined as the gain in the performance of a population per year
through selection. In modern plant breeding, the expected genetic gain
per year is defined asDG=i rsA/t, whereDG is the response to selection,
i is the intensity of selection, r is the correlation between true breeding
values and genotypic values,sA is the square root of the additive genetic
variance (i.e., standard deviation of the breeding value), and t is the
length of breeding cycle (Xu et al., 2017). Genomic selection is a recent
approach that increases genetic gain per unit of time by accelerating the
breeding process through estimating themerit of an individual with the
use of all the markers from the entire genome (Meuwissen et al., 2001;
Resende et al., 2012) but without phenotyping it. The first step in
genomic selection is to build the prediction model for estimating the
marker effect using a training population (i.e., with phenotypic and
genotypic data). Then, the model is validated through cross-validation.
Finally, genotypic or genomic estimated breeding values from a breed-
ing or selection population are predicted based on their genotypic in-
formation (Lorenz et al., 2012; Lado et al., 2016, 2018; Xu et al., 2017)
and the model. However, increasing prediction accuracies of the testing
population remains an area of continuous research for quantitative/
complex traits such as grain yield and quality traits (Sallam et al., 2015;
Lado et al., 2016, 2018). The predictive ability of a genomic selection
model is the correlation between the true and the predicted genetic (or
breeding) value from a cross-validation scheme (Lorenz et al., 2012;
Lado et al., 2016, 2018; Xu et al., 2017). The predictive ability is affected
by population size (Crossa et al., 2013; Zhang et al., 2016; Duangjit
et al., 2016; Berro et al., 2019), population structure (Endelman et al.,
2014; Heslot et al., 2015; Duangjit et al., 2016; Berro et al., 2019),
relationship between training and testing sets (Crossa et al., 2014;
Duangjit et al., 2016; Thorwarth et al., 2017), marker density (Poland
and Rutkoski 2016; Duangjit et al., 2016; Thorwarth et al., 2017), trait
architecture, heritability (Sallam et al., 2015; Duangjit et al., 2016;
Lozada and Carter 2019), and the statistical model (Lado et al., 2016,
2018; Xu et al., 2017; Lozada and Carter 2019).

Multi-trait (MT) genomic prediction models use the information
from individual lines andmultiple traits simultaneously. Recent studies
have evaluated the impact of MT prediction in genomic prediction
models. For instance, a study of 495 wheat advanced breeding lines has
includedmultiple baking quality traits in the genomic predictionmodel
and identified that the predictive ability of unobserved individuals was
increased compared to the single-trait (ST)model (Lado et al., 2018). Jia
and Jannink (2012) and Jiang et al. (2015) have incorporated genetically
correlated multiple traits in prediction models and identified a sig-
nificant improvement in predictive ability compared to ST models.
Montesinos-López et al. (2016) have found higher predictive ability
when using correlated traits compared to uncorrelated traits in the
MT prediction model. Similarly, several other studies have observed

an increase in predictive ability when multiple traits were included
in the prediction models (Rutkoski et al., 2012; Guo et al., 2014b;
Sun et al., 2017; Hayes et al., 2017; Lozada and Carter 2019). The use
of correlated traits could be especially valuable for predicting ex-
pensive or difficult to measure traits (Lado et al., 2018) such as
malting quality traits in barley. The main objectives of this study
were to determine whether incorporating multiple agronomic traits
into the genomic prediction models would increase the predictive
ability of an agronomic trait of interest such as yield, and whether
the inclusion of an agronomic trait or both agronomic and malting
quality traits would increase the predictive ability of a malting qual-
ity trait of interest in barley.

MATERIALS AND METHODS

Experimental materials
Four crosses using five parents were performed to create a large inter-
connected population of 980 doubled haploid lines (INNO1, CLE268 x
Kalena; INNO2, Kalena x CLE267; INNO3, Kalena x Conchita; and
INNO4, Livia x CLE268) at the Instituto Nacional de Investigacion
Agropecuria (INIA), Uruguay (Figure S1). A total of 145 doubled hap-
loid lines from those crosses were used for the model comparisons
(33 lines from INNO1, CLE268 x Kalena; 39 from INNO2, Kalena x
CLE267; 45 from INNO3, Kalena x Conchita; and 28 from INNO4,
Livia x CLE268, Figure S1). The 145 lines were evaluated for agronomic
traits for two years (2015 and 2016) in three locations [EELE (57�42’W,
30�20’S), MOSA (58�02’W, 33�16’S in 2015 and 58�04’W, 33�19’S in
2016), and MUSA (57�58’W, 33�54’S in 2015 and 57�53’W, 34�01’S in
2016)] and three years (2015, 2016, and 2017) in another location
[EEMAC (58�03’W, 32�22’S)]. This resulted in a total of nine environ-
ments (location-year combinations; EELE15, EELE16, EEMAC15,
EEMAC16, EEMAC17, MOSA15, MOSA16, MUSA15, andMUSA16)
for evaluating agronomic traits. Malting quality traits were evaluated
from samples of three of the experiments EEMAC15, EELE15, and
MUSA15. All the experiments were conducted in a partially replicated
experiment (Cullis et al., 2006) with eight replicated lines in each
experiment augmented in a randomized complete block design. The
agronomic traits measured in this study were grain yield (kg ha-1),
number of grains per square meter, thousand grain weight (g), and
grain plumpness (%; the percentage weight of grains retained over a
2.5 mm sieve). The thousand grain weight and number of grains per
square meter were not measured in 2016 at MUSA. The malting
quality traits evaluated were beta-glucan content (ppm), malt ex-
tract (% dry basis), soluble nitrogen (mg per 100 g), and grain pro-
tein content (%). Micro-malting was performed at the Laboratorio
Tecnológico del Uruguay (LATU) and Malteria Oriental S.A. follow-
ing a standard malting procedure.

Phenotypic data analysis
The estimation of the genotypic best linear unbiased estimates (BLUEs)
was obtained from the following model:

yijkl ¼ mþ Ei þ BjðiÞ þ Gk þ GEikþ eijkl

where yijkl is the trait of interest; m is overall mean; Ei is the effect of
the i-th environment (location-year combination, location, or year);
Bj(i) is the effect of the j-th block nested within the i-th environment;
Gk is the effect of the k-th genotype; GEjk is the effect of the genotype
by environment interaction; and eijkl is the residual error. Genotype
was assumed as a fixed effect, whereas environment, block nested
within the environment, and genotype by environment interactions
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(GEI) were assumed as random effects. For individual experiments,
BLUEs were estimated using the above-mentioned model excluding
environment (E) and GEI effects. These analyses were performed
using PROC MIXED in SAS 9.4 (SAS Institute 2018) using restricted
maximum likelihood estimates for random effects.

Broad-sense heritability for combined experiments was calculated
using the model described by Cullis et al. (2006):

H2 ¼ 12
�vBLUP
2s2g

where, �vBLUP is the average pairwise variance of the best linear un-
biased predictor (BLUP) and s2

g is genotypic variance estimated using
the ‘sommer’ package in R (Covarrubias-Pazaran 2018).

Pearson correlations among traits and environments were esti-
mated based on the BLUEs using the rcorr function of ‘Hmisc’
package in R (Harrell 2019). Principal component (PC) analysis
was performed for all traits based on the correlation matrix to fur-
ther understand the association between traits using the ‘factoextra’
package in R (Kassambara and Mundt 2017).

DNA extraction and SNP genotyping
Leaf tissue samples were collected from all 980 lines and DNA was
extracted using the CTAB method (Saghai-Maroof et al., 1984).
Genotyping was performed using the 50K single nucleotide poly-
morphism (SNP) iSelect array at the Cereal Crops Research, Fargo,
ND. SNP alleles were called using GenomeStudio software v2.0.4
(Illumina, San Diego, California). There were two main steps in-
volved in the SNP calling using GenomeStudio. The first step in-
volved performing SNP calls using the default clustering algorithm
implemented in GenomeStudio and determining the three dis-
tinct clusters corresponding to the AA, AB, and BB genotypes.
The second step involved manual curation of SNP allele clusters
that were unable to clearly be identified using the default algorithm
(Guo et al., 2014a). The accuracy of SNP calling was validated by
looking at the cluster performed, call rate value (.0.95%), and
GenTrain score (.0.24). To further improve the quality of SNPs
called, SNPs with call frequency,95%, minor allele frequency,0.05
and SNPs that were unmapped on barley chromosomes were re-
moved from the analysis. This process resulted in 6,482 high-quality
polymorphic SNPs that were distributed across the seven barley
chromosomes (Figure S2). For genomic prediction models, SNPs
were converted to -1, 0, and +1, where -1 indicates minor allele at a
given locus, 0 indicates heterozygous loci, and +1 indicates major
allele at a given locus. The additive relationship matrix (K) was
estimated using the ‘A.mat’ function in the ‘rrBLUP’ package in R
(Endelman 2011).

Genomic prediction models and cross-
validation schemes
Genomic prediction models were evaluated with the 145 lines that had
genotypic and phenotypic information. Single trait (ST) andmulti-trait
(MT)models for genomic prediction of agronomic and malting quality
traits were obtained following Lado et al. (2018). In brief, the ST model
was estimated using a Bayesian ridge regression model for each trait
with 1,500 burn-in and 3,000 iterations for theGibbs sampler algorithm
implemented in the ‘BGLR’R package (Pérez and de los Campos 2014).
The predictive ability was obtained for all agronomic and malting
quality traits using the following ST model.

y ¼ 1mþ Zuþ e

where y is the vector (n x 1) of phenotype on n genotypes for a single
trait; 1 is a vector (n x 1) of ones of length n; m is the overall mean; Z
is the incidence matrix (n x p) with fixed known values of pmarkers
for these genotypes, u(nx1) is a genotypic predictor with u�N(0, Knxn

s2
g), where K is the realized additive relationship matrix and s2

g is
additive genetic variance; and e is the residual errors vector with
e�N(0, Rnxn s2

e) where R accounts for heterogeneity in mean esti-
mate precision. The predictive abilities for the STmodel were estimated
using only one cross-validation scheme (CV1) as shown in Figure 1.

Figure 1 Prediction scheme for the single trait (ST) and multi-trait (MT)
genomic prediction models with two cross-validation schemes (CV1
and CV2) used in this study. ST-CV1 model: single trait prediction
model with cross-validation scheme 1 where a trait (e.g., grain yield;
YLD) is predicted at a time; we used 60% of individuals as the training
set (phenotyped and genotyped, light green) and 40% of the individ-
uals as the testing set (genotyped only, light blue with PRD code for
the trait to be predicted, yield as an example here). MT-CV1 model:
multi-trait prediction model with cross-validation scheme 1 for new
un-phenotyped individuals; we used 60% of individuals as the training
set (phenotyped for all traits and genotyped; light green) and 40% of
the individuals as the testing set (genotyped but not phenotyped for
any trait; light blue with PRD code for the trait to be predicted, yield as
an example here). MT-CV2 model: multi-trait prediction model with
cross-validation scheme 2 where 100% of the information from other
traits are available for the individuals to be predicted; we used 60% of
individuals as the training set (phenotyped for all traits and genotyped;
light green) and 40% of the individuals as the testing set (phenotyped
for associated traits but not for the targeted traits, and genotyped;
light blue with PRD code for the trait to be predicted, yield as an
example here). Rectangles represent genotypes and colors represent
whether the phenotypic information was used (light green) or not (light
blue with PRD code for the trait to be predicted, yield as an example
here) for the population. Similar scheme was applied for predicting
thousand grain weight (TGW), grain plumpness (PLM), number of
grains per square meter (GM2), protein content (GPC), beta-glucan
content (BGL), malt extract (EXT), and soluble nitrogen (SNI) where
PRD was used for TGW, PLM, GM2, GPC, BGL, EXT and SNI one
at a time.

Volume 10 March 2020 | Genomic Selection for Multiple Traits | 1115



The MT model was built using a Bayesian multivariate Gaussian
model estimating an unstructured variance-covariance matrix between
traits (Σ) and residual matrix (R) with 1,500 burn-in and 3,000 itera-
tions for the Gibbs sample algorithm implemented in the ‘MTM’ R
package (de los Campos and Grüneberg 2016) as described by Lado
et al. (2018). The model used was:

y ¼ 1mþ Zuþ e

where y is a vector of n x t length (n genotypes and t traits); 1 is a
vector of ones of length nxt; m is the overall mean; Z[(nxt)xp] is the
incidence matrix; u[nxt)x1] is a genotypic predictor with u � MVN(0,
Σ5K) and e is the residual errors vector with e � MVN(0, R5I),
where Σ is the variance-covariance matrix across traits, K is the re-
alized additive relationship matrix among individuals estimated from
the markers, R is the variance-covariance matrix for the residual
effects for each individual in all traits, and I is the nxn identify matrix.
Σwas estimated as an unstructured matrix and R as a diagonal matrix
following Lado et al. (2018). The predictive abilities for the MTmodel
were estimated using two cross-validation schemes (CV1 and CV2) as
described in Figure 1.

Two genomic predictionmodels (ST andMT)were used to compare
two main cross-validation schemes described previously (Lado et al.,
2018) (Figure 1). Briefly, the first cross-validation scheme (CV1) used a
random set of lines (60%; �90) with phenotypic and genotypic infor-
mation (training set) to train themodel and the remaining lines (testing
set; 40%; �60) for prediction using genotypic information only. This
process was repeated 100 times, where each iteration included differ-
ent lines in the training and testing sets. The second cross-validation
scheme (CV2) used a random set of lines (60%) with phenotypic and
genotypic information for the trait of interest and other multiple traits
(i.e., correlated traits) to train the model. The remaining lines (40%)
were predicted for the trait of interest using genotypic and phenotypic
information from other correlated traits. This process was repeated
100 times where each iteration included different lines in the training
and testing sets. The first cross-validation scheme was used for the ST
(designated as ST-CV1) and MT (MT-CV1) models, whereas the sec-
ond cross-validation scheme was used only for the MT (MT-CV2)
model. In short, the CV2 scheme uses full genotypic information on
every individual (training and prediction sets), full phenotypic infor-
mation for correlated traits on every individual (training and predic-
tion sets), and phenotypic information of trait of interest only on the
training set. Therefore, CV2 only applies to multiple traits problems.

Pearson’s correlation (rPA) between the genotypic values and genotypic
BLUEs was estimated to determine the predictive ability of the models.

Genomic prediction models for agronomic traits were tested using
the BLUEs from an individual experiment, experiments across locations
(EELE, EEMAC, MOSA, and MUSA), years (2015 and 2016), and all
combined (designated as ‘ALL’). Similarly, genomic prediction models
for malting quality traits were tested using BLUEs from individual
experiments conducted in 2015 (EELE15, EEMAC15, MOSA15, and
MUSA15), experiments combined across locations in 2015 (‘ALL15’)
and using agronomic trait information from all nine experiments com-
bined (ALL). Agronomic traits used in the genomic prediction models
were grain yield, thousand grain weight, number of grains per square
meter, and grain plumpness. For the MT model, two strategies were
used for predicting agronomic traits of interest. The first strategy in-
cluded predicting the agronomic trait of interest using all other three
agronomic traits (AGRO). The second strategy included predicting the
agronomic trait of interest using the remaining three agronomic traits
and all four malting quality traits (A+M). Similarly, five strategies
were used for predicting malting quality trait of interest as follows:
(i) all four agronomic traits (AGRO), (ii) both agronomic and malt-
ing traits (A+M), (iii) positively correlated traits with grain protein
content (COR1; beta-glucan content, grain plumpness, soluble nitro-
gen, and grain protein content), and (iv) traits explaining the largest
variance in the first principal component (PC1 or COR2: grain yield,
thousand grain weight, number of grains per square meter, and grain
protein content); and (v) traits explaining the largest variance on the
second principal component (PC2 or COR3: beta-glucan content,
grain plumpness, soluble nitrogen, and malt extract).

Data availability
File S1 contains supplementary Tables S1-S6 and Figures S1-S6.
Table S1 contains basic summary statistics with BLUEs, standard
error, minimum, maximum, coefficient of variation, broad sense
heritability, and proportion of variance component for genotype by
the environment and genotypic effect for agronomic and malting
quality traits evaluated across multiple locations and years. Table S2
contains an analysis of variance with mean squares for agronomic
andmalting quality traits. Table S3 contains genomic predictive ability
for un-phenotyped environments usingMT-CV1 andMT-CV2mod-
els. Table S4-S6 contains predictive ability for agronomic and malting
quality traits using MT-CV1 and MT-CV2 models. Figure S1 shows a
principal component analysis of all individuals. Figure S2 contains a

n■ Table 1 Best linear unbiased predictors (BLUEs) and standard deviation (in parenthesis) for each environment (i.e., combination of
location-year) evaluated for agronomic and malting quality traits in in Uruguay

Agronomic Malting Quality

Location
Grain yield
(kg ha-1)

Thousand grain
weight (g)

No. of grains
per m2

Grain
plumpness (%)

Malt
extract (%)

Beta-glucan
content (ppm)

Soluble Nitrogen
(mg per 100g)

Grain protein
content

——————————————————————— 2015 ———————————————————————

EELE 9131 (849.2) 50.5 (2.5) 18062 (1860.4) 97.8 (0.9) 81.2 (1.0) 158.1 (89.7) 618.2 (62.6) 10.6 (0.7)
EEMAC 5406 (918.4) 44.1 (3.0) 12314 (2206.7) 88.5 (4.7) 81.0 (0.9) 387.0 (156.0) 595.2 (51.1) 10.9 (0.7)
MOSA 7134 (1034.4) 41.1 (3.8) 17466 (2742.2) 82.4 (8.3) 80.2 (1.1) 259.2 (111.0) 676.2 (59.6) 10.8 (0.7)
MUSA 3801 (854.4) 40.3 (3.7) 9640 (2384.0) 87.3 (5.5) — — — —

——————————————————————— 2016 ———————————————————————

EELE 5535 (883.3) 45.6 (2.2) 12257 (2125.3) 94.8 (1.7) — — — —

EEMAC 4934 (588.7) 47.4 (2.8) 10500 (1448.0) 97.3 (1.5) — — — —

MOSA 8192 (741.4) 50.3 (3.8) 16326 (2047.2) 96.7 (1.9) — — — —

MUSA 3937 (1034.5) 94.7 (2.0) — — — — — —

——————————————————————— 2017 ———————————————————————

EEMAC 5163 (1374.9) 37.9 (5.7) 13741 (3630.4) 66.5 (14.1) — — — —
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distribution of the 6,482 single nucleotide polymorphisms (SNPs)
across the seven chromosomes of barley in 145 doubled haploid lines.
Figures S3-S6 contain Pearson’s correlation among environments
(locations-years) for grain yield, number of grains per square meter,
grain plumpness, and thousand grain weight, respectively. File S2
contains the BLUEs for the agronomic traits (grain yield, plumpness,
thousand grain weight, and number of grains per square meter) from
individual experiments (EELE15, EELE16, EEMAC15, EEMAC16,
EEMAC17, MOSA15, MOSA16, MUSA15, and MUSA16), experi-
ments across locations (EELE, EEMAC, MOSA, and MUSA), years
(2015, 2016, and 2017), and all experiments combined (ALL). File S3
contains the BLUEs for the malting quality traits (beta-glucan con-
tent, malt extract, protein content, and soluble nitrogen) from the
experiments conducted in 2015 in three locations (EELE, EEMAC,
andMOSA) and for the combined experiments (ALL15). Supplemen-
tal material available at figshare: https://doi.org/10.25387/g3.9172619.

RESULTS

Multi-trait characterization
Basic summary statistics and analysis of variance of the agronomic
and malting quality traits are in Tables 1, S1, and S2. A wide range of
variation was observed for agronomic and malting quality traits
across environments (EELE, EEMAC, MOSA, and MUSA). The
highest mean grain yield averaged over years was observed at MOSA
(7,658 kg ha-1), followed byEELE (7,337 kg ha-1), EEMAC (5,134 kg ha-1),

and MUSA (3,877 kg ha-1). Similarly, a wide variation across envi-
ronments was observed for other traits.

Variance component analysis showed that the proportion of the
variance explained by the GEI effects to genotypic effects was greater
than one for most of the agronomic traits whereas lower than one for
malting quality traits (Table S1). Broad-sense heritability estimates for
agronomic traits were low to high ranging from 0.20 to 0.80 (Table S1).
Low to moderate heritability was observed for grain yield (0.20 to 0.66)
and plumpness (0.25 to 0.53) whereas moderate to high heritability
was observed for number of grains per square meter (0.46 to 0.71) and
thousand grain weight (0.42 to 0.80). Relatively high heritability was
observed for malting quality traits ranging from 0.66 (beta-glucan
content) to 0.74 (soluble nitrogen) (Table S1).

Grainyieldwaspositivelycorrelatedwithplumpnessandthenumber
of grains per square meter, negatively correlated with grain protein
content, and not correlated with grain weight (Figure 2). Grain protein
content affects the malting quality of barley as indicated by the pos-
itive correlation with beta-glucan content, soluble nitrogen, and grain
plumpness, and negative correlation with malt extract. Additionally,
grain protein content was correlated with both yield components
(positive correlation with grain weight and negative correlation with
the number of grains). The correlation values for all agronomic traits
were mostly higher among locations than years (Figures S3-S6).

In the principal component analysis (PCA), the first two PCs
explained�52% of the total variation (Figure 3). The PC1 was mostly
explained by yield component traits, such as grain yield, protein

Figure 2 Genetic correlation between
agronomic and malting quality traits
using best linear unbiased estimates
from combining three experiments
(EEMAC, EELE, and MOSA) conducted
in 2015. Numbers in bold indicate a
correlation significantly different from
zero at an alpha level of 0.05. BGL,
beta-glucan content; EXT, malt extract;
GM2, number of grain m-2; PLM, grain
plumpness; TGW, thousand grain weight;
GPC, grain protein content; SNI, sol-
uble nitrogen; and YLD, grain yield.
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content, number of grains per squaremeter, and thousand grain weight.
The PC2 was mostly explained by malting quality traits such as beta-
glucan content, malt extract, grain plumpness, and soluble nitrogen.

Genomic prediction for agronomic traits
The model (MT-CV2) that included other agronomic traits from
individuals to be predicted performed better for agronomic traits
than either single (ST-CV1) or multi-trait (MT-CV1) models with-
out this information (Figure 4 and Table S4). For instance, the pre-
dictive ability for grain yield using the MT-CV2 model was high
ranging from 0.34 to 0.70 for most environments. Low predictive
ability was found for MUSA16 and MUSA combined. The MUSA16
environment, where agronomic traits were weakly correlated, was
an outlier. The predictive ability was high for all agronomic traits
ranging from 0.56 to 0.60 using the MT-CV2 model when all ex-
periments were combined (Figure 4 and Table S4).

To identify whether the inclusion of additional traits such asmalting
quality traits along with the agronomic traits in an MT model could
further improve the predictive performance of agronomic traits of
interest, we evaluated a multi-trait (MT-CV2) prediction model in-
cluding both agronomic andmalting (A+M) traits and compared itwith
the MT model including agronomic (AGRO) traits only (Figure 5 and
Table S5). The predictive ability for the agronomic trait of interest was
further increased from using both A+M traits compared to the model
with AGRO traits only. For instance, the mean predictive ability of the
MT-CV2 model at all combined experiments in 2015 for grain yield
using only agronomic traits was 0.57 compared to 0.77when using both
agronomic and malting traits.

Genomic prediction for malting quality traits
A substantial increase in the predictive ability of themalting quality trait
of interest was observedusing theMT-CV2model containingA+Mand

other correlated traits (COR1, COR2, and COR3) in the prediction
model for both individual and combined experiments (Figure 6 and
Table S6). Additionally, the predictive ability of grain protein content
was increased using the MT-CV2 model containing only agronomic
traits. However, the predictive ability of ST-CV1, MT-CV1, and
MT-CV2 models was similar when we used only the agronomic traits
to predict other malting quality traits. The predictive ability of the
MT-CV2 model that uses both agronomic and malting quality traits
had the highest predictive ability for malting quality traits fol-
lowed by the models that included correlated traits. For instance,
the predictive abilities for grain protein content using MT-CV2
models with A+M traits ranged from 0.25 to 0.46. Similarly, the
predictive abilities for grain protein content using MT-CV2 that
included correlated traits ranged from 0.07 to 0.38. The grain pro-
tein predictive ability at all combined experiments using the
MT-CV2 model with A+M had 76.2% and 75.8% higher predictive
ability than using the MT-CV1 model with A+M and ST-CV1 mod-
els, respectively.

Genomic prediction in un-phenotyped environment
Genomic prediction for a location using the information fromother
years (e.g., predict 2017 from 2015 and 2016 information and vice
versa) had relatively lower predictive ability compared to the pre-
diction for a location using information from other locations (e.g.,
predict EELE from using EEMAC, MOSA, and MUSA) (Table S3).
In general, genomic prediction using the MT-CV2 model had a
higher predictive ability for all traits compared to the MT-CV1
model for unobserved environments. For instance, grain yield pre-
dictive ability across locations using the MT-CV1 was up to 0.26
and the MT-CV2 model was up to 0.41. For prediction across
years, the MT-CV1 model was up to 0.27 and the MT-CV2 was
up to 0.32. The highest predictive abilities using MT-CV2 for grain

Figure 3 Principal component analysis show-
ing the association between agronomic and
malting quality traits. BGL, beta-glucan con-
tent; EXT, malt extract; GM2, number of
grains per square meter; PLM, grain plump-
ness; TGW, thousand grain weight; GPC,
grain protein content; SNI, soluble nitro-
gen; and YLD, grain yield. PVE: Proportion
of the variance explained by each trait.
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plumpness, thousand grain weight, and number of grains per
square meter were 0.52, 0.53, 0.52, and 0.46, respectively. For
locations, on average, the highest predictive ability was observed
at EEMAC for grain yield, MOSA for plumpness, EELE for thou-
sand grain weight, and MUSA for number of grains per sq. m using
the MT-CV2 model.

DISCUSSION
Plant breeders routinely collect multiple traits for evaluating the
performance of genotypes in multiple environments. The selection
of genotypes based on genome-wide markers and phenotypic in-
formation using genomic selection methods is gaining popularity
in breeding programs with the advent of cost-effective and robust
next-generation sequencing technologies (Poland and Rife 2012).
However, only a few studies have been conducted using multi-trait
multi-environment genomic selection methods due to complexity of
model and requirements of high computing power (Calus and
Veerkamp 2011; Jia and Jannink 2012; Rutkoski et al., 2015; Lado
et al., 2018; Ward et al., 2019). The present study investigated the
different strategies for including multiple traits in multi-environment
trials for predicting un-phenotyped or partially phenotyped lines.

Trait characterization and association
The first thing to do before utilizing multiple traits in a genomic
prediction model is to understand the characteristics of the traits
used. This study evaluated four agronomic traits (grain yield,
thousand grain weight, grain plumpness, and number of grains

per square meters) and four malting quality traits (beta-glucan
content, malt extract, protein content, and soluble nitrogen) for use
in a multi-trait genomic selection model. The proportion of var-
iance explained byGEI was larger for agronomic traits thanmalting
traits (Table S1), suggesting a large influence of GEI effects on
agronomic traits compared to quality traits. The larger influence of
GEI on agronomic traits resulted in a lower heritability for agro-
nomic traits compared to quality traits. Lower heritability estimates
for agronomic traits such as grain yield was expected as they are
governed by many genes and are genetically complex in nature
(Thorwarth et al., 2017; Bhatta et al., 2018b). Similar results were
observed for agronomic and quality traits in previous studies (Rode
et al., 2012; Sallam et al., 2015; Thorwarth et al., 2017).

For the MT model for agronomic traits, two sets of traits (set 1:
grain yield and number of grains per square meter; and set 2:
plumpness and thousand grain weight) were strongly positively
correlated to each other. The positive correlation of grain yield with
number of grains per square meter and no correlation with grain
weight in the current study indicates that the grain yield was largely
defined by the number of grains per square meter component. The
negative relationship between grain yield and protein content
identified in this study is well understood in cereal crops and is
mainly associated with the dilution effect (Bertholdsson 1999;
Bhatta et al., 2018a). Similarly, the positive association of thou-
sand grain weight and a negative association of malt extract with
grain protein content have been reported previously in malting
barley cultivars (Bertholdsson 1999; Dai et al., 2007).

Figure 4 Box plots showing
the predictive ability for grain
yield (YLD), plumpness (PLM),
thousand grain weight (TGW),
and number of grains per square
meter (GM2) using single trait
(ST) and multi-trait (MT) mod-
els from individual experiments
(EELE15, EELE16, EEMAC15,
EEMAC16, EEMAC17, MOSA15,
MOSA16,MUSA15, andMUSA16),
experiments across locations
(EELE, EEMAC,MOSA, andMUSA),
years (2015, 2016, and 2017),
and all experiments combined
(ALL). CV1, predicting new lines
with genotypic information only
and CV2, predicting partially
phenotyped lines by using ge-
notypic and phenotypic infor-
mation from all traits from
individuals in the training set,
and genotypic and correlated
phenotypic traits in the testing
set.
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Multi-trait genomic prediction models and their
implications in a breeding program
Increasing genomic predictive ability of quantitative and complex traits
such as grain yield and malting quality traits are primary goals for
successful utilization of genomic selections in breeding programs
(Sallam et al., 2015; Lado et al., 2016, 2018). In this study, we have
evaluated eight traits with different range of heritabilities and cor-
relations to investigate strategies for integrating multiple traits into
the prediction model. The main aim of the study was to determine
whether incorporating multiple agronomic traits or both agronomic
and malting quality traits into the multi-trait models (MT-CV1 and
MT-CV2) could further improve the predictive ability of a trait of
interest compared to single trait (ST-CV1) model. The present study
suggests little to no advantage of the MT-CV1 model, irrespective
of different multiple traits inclusion strategies, compared to the
ST-CV1 model when predicting new genotypes. Newly introduced
genotypes are untested for multiple traits across environments and
using the MT-CV1 under this scenario may not provide additional
information to leverage for increasing predictive ability (Burgueño
et al., 2012; Ward et al., 2019). Also, the predictive ability using
MT-CV1 and ST-CV1 was low for grain yield (0.07 to 0.17 for
MT-CV1 and 0.05 to 0.15 for ST-CV1). Similar results were ob-
served in previous studies where the MT-CV1 model that included
correlated traits did not perform better than the ST-CV1 model
(Calus and Veerkamp 2011; Schulthess et al., 2016; Dos Santos
et al., 2016; Lado et al., 2018), demonstrating that themulti-trait models
are not necessarily advantageous for new individuals compared to the

single-trait model. This result may be associated with the trait com-
plexity and wide range of heritability of the multiple traits used (Jia and
Jannink 2012; Lado et al., 2018). However, a few studies have identified
considerable increase in predictive ability due to the inclusion of cor-
related traits with high heritability in MT-CV1 models (Rutkoski et al.,
2012; Jia and Jannink 2012; Guo et al., 2014b; Montesinos-López et al.,
2016), but the benefit of MT-CV1 model for complex trait is minimal
compared to the ST-CV1 model (Jia and Jannink 2012).

The MT-CV1 and ST-CV1 models did not show differences, it is,
therefore, similar to compare ST-CV1 toMT-CV2.TheMT-CV2model
for all studied traits significantly improved the predictive ability for the
trait of interest compared to MT-CV1 and ST-CV1 models. Addition-
ally, theMT-CV2model hadhigherpredictive abilities for all agronomic
traits (0.56 to 0.60) across all combined experiments. For instance, the
MT-CV2 model for grain yield across all combined experiments in-
creased the predictive ability by 57% and 61% compared to the ST-CV1
and MT-CV1 models, respectively. This may be associated with the
higher heritability estimates of combined environments compared to
individual environments. The higher predictive ability in genomic
prediction models for a trait is expected when the heritability is higher
(Jia and Jannink 2012; Guo et al., 2014b; Thorwarth et al., 2017; Wang
et al. 2017). This result suggested that the MT-CV2 model can provide
fairly high genomic predictive performance for a complex trait such as
grain yield for multi-environment trials when high heritability and
correlated traits are used. Similarly, Wang et al. (2017) have also re-
ported a higher predictive ability for grain yield when using the multi-
trait model in rice. A genomic prediction study in 750 winter barley
genotypes identified low predictive ability for grain yield (0.31) and
high predictive ability for thousand grain weight (0.71) (Thorwarth
et al., 2017) comparable to the predictive abilities of the MT-CV2
model in our study. This result suggested that the MT-CV2 model
could be useful in predicting traits after partially phenotyping com-
plex traits such as grain yield. Furthermore, the predictive ability of
agronomic trait of interest using the MT-CV2 model was improved
using both agronomic and malting traits compared to using agro-
nomic traits only. For example, the MT-CV2 model with both ag-
ronomic and malting traits for grain yield across all combined
experiments in 2015 increased predictive ability by 26% compared
to the MT-CV2 model with agronomic traits only. Evaluating malt-
ing quality traits for predicting the agronomic traits may not have a
practical implication on a breeding program, however, the most
interesting aspect is that if researchers are evaluating malting quality
traits for their study, using this information will improve the yield
prediction. This result showed the potential strategy for further
improving complex traits such as grain yield via the inclusion of a
larger number of highly heritable and correlated traits. On the other
hand, the predictive ability of the MT-CV2 model that included
weakly correlated traits such as grain yield and plumpness at MUSA
and MUSA16 had similar predictive ability compared to MT-CV1
and ST-CV1 models. This result was expected due to the fact that
uncorrelated/weakly correlated traits have rarely useful information
from the correlation matrix that goes into the multi-trait prediction
model (Jia and Jannink 2012; Montesinos-López et al., 2016; Wang
et al., 2017; Lado et al. 2018), thereby, no additional improvement in
the predictive ability was observed.

Malting quality traits are expensive, time-consuming, labor-
intensive, and difficult to breed due to their complex genetic
architecture (Gutiérrez et al., 2011). Nevertheless, in malting bar-
ley production, they are generally the key and final factor deter-
mining if an experimental line can be developed into a commercial
variety. Using information from correlated traits could increase

Figure 5 Boxplots showing the predictive ability for grain yield (YLD),
plumpness (PLM), thousand grain weight (TGW), and number of grains
square meter (GM2) using single trait (ST) and multi-trait (MT) models
from 2015 experiments conducted in three locations (EELE, EEMAC,
and MOSA). ALL15, three combined experiments of the year 2015;
CV2, predicting partially phenotyped lines by using genotypic and
phenotypic information from all traits from individuals in the training
set, and genotypic and phenotypic information from other correlated
traits in the testing set.; The correlated traits were: AGRO, agronomic
traits (YLD, PLM, TGW, and GM2); or A+M, agronomic and malting
quality traits (beta-glucan content, malt extract, protein content, and
soluble nitrogen).
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Figure 6 Box plots showing the predictive ability for malting quality traits using single trait (ST) and multi-trait (MT) prediction models for the
experiments conducted in 2015 in three locations (EELE, EEMAC, and MOSA) and for the combined experiments in 2015 (ALL15) and all (ALL).
ALL, agronomic traits from all nine experiments combined and malting traits from the ALL15; CV1, predicting new lines with genotypic
information only; and CV2, predicting partially phenotyped lines by using genotypic and phenotypic information from all traits from individuals in
the training set, and genotypic and phenotypic information from other correlated traits in the testing set. Predicted traits were: beta-glucan
content; malt extract; protein content; and soluble nitrogen; ST represents single trait, AGRO, agronomic traits (grain yield, plumpness, thousand
grain weight, and number of grains per square meter) and trait of interest for multi-trait prediction model; A+M, agronomic and malting quality
traits; COR1, denotes correlated traits which are soluble nitrogen, thousand grain weight, beta-glucan content, plumpness, and grain protein
content; COR2, denotes traits within principal component 1 (PC1), which are grain yield, thousand grain weight, number of grains per square
meter, and grain protein content; COR3, traits within PC2 which are beta-glucan content, plumpness, soluble nitrogen, and extract. Treatment
combinations were shown in a 5 · 8 rectangle figure where each small rectangle with colors represent the presence (black) or absence (white) of
phenotypic information used in the prediction model.

Volume 10 March 2020 | Genomic Selection for Multiple Traits | 1121



the predictive performance of the trait of interest (Jia and Jannink
2012; Wang et al., 2017). In this study, the highest predictive ability
for malting quality traits was observed when using the MT-CV2
model including both agronomic and malting quality traits followed
by the model including some correlated traits. These results sug-
gested that the prediction of quality traits in genomic selection could
be improved by borrowing information from correlated agronomic
traits. A recent study on multi-trait genomic prediction in bread
baking quality in 495 advanced wheat lines has reported increased
predictive ability from the MT-CV2 model that included one highly
correlated trait compared to MT-CV1 and ST-CV1 models (Lado
et al., 2018). Several other studies have also reported advantages
of the multi-trait prediction model for predicting traits of partially
phenotyped individuals (Rutkoski et al., 2012; Jia and Jannink
2012; Guo et al., 2014b; Sun et al., 2017; Hayes et al., 2017). This
result suggested that the MT-CV2 model that included correlated
traits should be used as a strategic approach to replace phenotyp-
ing of labor-intensive and high-cost traits such as malting traits.
However, the predictive abilities of ST-CV1, MT-CV1, and MT-CV2
models were similar when we used only the agronomic traits that were
uncorrelated with malting quality traits to predict malting quality
trait of interest.

Additionally, this study showed that the predictive ability using
the MT-CV2 model could be further increased with the increase in
the number of associated traits included in the prediction model.
Similarly, a previous study on 575 rice hybrids had reported an
increase in the predictive ability with the increase in the number of
multiple traits included in the predictionmodel (Wang et al., 2017).
However, other studies have shown that the contributions of mul-
tiple traits in the model would tend asymptotically toward zero, and
additional traits could introduce issues in co-linearity; and there-
fore, fewer traits have been recommended (Schulthess et al., 2016;
Lado et al., 2018; Lozada and Carter 2019).

Similarly, genomic prediction in un-phenotyped environments
using the MT-CV2 model outperformed the MT-CV1 model. This
result suggests that the MT-CV2 model should be used for predict-
ing the performance of genotypes in new environments when
phenotyping was performed for other traits. On average, predicting
a location using other location data resulted in a higher predic-
tion compared to predicting across the year. This result may be
associated with higher correlations among locations compared to
correlations among years where high GEI was observed.Wang et al.
(2017) had observed a higher predictive ability of the MT multi-
environment model compared to the ST single environment model
because MT multi-traits models can borrow information from
associated traits across environments. This study showed the use-
fulness of the MT-CV2 model in predicting a new environment
despite the presence of GEI.

However, there are several factors affecting the predictive
abilities of MT multi-environment genomic prediction models.
Some of the important factors associated with this study were the
size and composition of the training population (Crossa et al., 2013;
Zhang et al., 2016; Duangjit et al., 2016; Berro et al., 2019), the
genetic relationship between the training and testing population
(Crossa et al., 2014; Duangjit et al., 2016; Thorwarth et al., 2017),
trait genetic architecture and heritability (Sallam et al., 2015;
Duangjit et al., 2016; Wang et al., 2017; Lozada and Carter
2019), trait correlations (Lozada and Carter 2019), correlations
among environments (Lado et al., 2016), and GEI (Heslot et al.,
2014; Lado et al., 2016). Although the population size in our study
was small, the predictive ability using correlated traits in the CV2

scheme had high PA, suggesting that correlated traits could some-
what offset the effect of smaller population sizes.

Although poor predictive ability remains a major challenge in
implementing genomic selection (Crossa et al., 2014), several studies
have shown that genomic selection could be advantageous for com-
plex traits with low heritability such as grain yield (Belamkar et al.,
2018; Burgueño et al., 2012; Lozada et al., 2019). Genomic selection
with low to moderate levels of predictive ability could be used in
early-generation testing and selection (Belamkar et al., 2018; Juliana
et al., 2018; Michel et al., 2018) and in off-season nurseries where
field phenotypic information might be useless. Breeding program do
not rely on predictive ability itself, but also on how genomic selec-
tion can be leveraged in selecting or discarding lines within a pro-
gram, selecting parents, and phenotyping efforts (Belamkar et al.,
2018; Juliana et al., 2018; Lado et al., 2018).

CONCLUSIONS
Multiple traits such as agronomic and malting quality traits are
routinely evaluated in barley breeding programs. In general, every
experimental line goes through an extensive selection process which
includes a high number of experiments, all of them including
agronomic phenotyping and a fraction of them including malting
quality testing (due to cost and logistical reasons). Genomic selection
using multiple traits collected throughout the breeding program
could be useful for improving the genomic prediction of complex
traits of interest. We evaluated strategies for adding multiple traits
and compared their impact on the predictive ability of the single
(ST-CV1) and multi-trait genomic prediction models (MT-CV1 and
MT-CV2) on the predicted genotypic values for a trait of interest in
barley breeding program. We found that including agronomic traits
that are relatively easy to score and inexpensive improves the pre-
diction of more complex traits such as grain yield and expensive/
difficult to measure traits such as malting quality traits. These results
can have a large impact on breeding programs where improving grain
yield is amajor goal andmalting quality evaluations are not performed
routinely in all individuals, but agronomic evaluations are. Our results
suggest that including genotypic information and a model that in-
cludes all the collected data, breeders can improve the identification of
superior lines with a small increase in the costs. Using these strategies
could significantly change the way that phenotyping trials are set up in
the future, and also the way that individuals are chosen to be pheno-
typed for malting quality traits.
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