

DIA DE CAMPO DE CULTIVOS DE INVIERNO

NOVIEMBRE 2004

Serie Actividades de Difusión N°384

TABLA DE CONTENIDO

P	ágina
Manejo sanitario en cebada. Parcelas demostrativas sanitarias – La Estanzuela Silvia Pereyra, Juan E. Díaz, Néstor González, INIA La Estanzuela	1
Control de gramíneas en trigo y cebada	3
Tecnología para altos rendimientos de trigo	9
Aplicación de funguicidas en cultivares de cebada Silvia Pereyra, Marina Castro, Néstor González, INIA La Estanzuela	11
Mejoramiento Genético de Trigo	12
Mejoramiento Genético de Cebada Juan E. Díaz, Silvia Germán, Silvia Pereyra, INIA La Estanzuela	18

MANEJO SANITARIO EN CEBADA PARCELAS DEMOSTRATIVAS SANITARIAS – LA ESTANZUELA

Silvia Pereyra¹
Juan E. Díaz²
Néstor Gonzalez¹

Objetivo:

 Herramienta para comprender la utilidad de las distintas medidas de manejo para enfermedades en cebada

Manejo:

Fecha de siembra: 15 de junio de 2004

Fecha de emergencia: 02/07

Fertilizaciones: 03/08 - 30 kg urea/ha, 03/09 - 90 kg urea/ha

Control de malezas: 23/08 - Glean (20 g/ha)

Situaciones:

• Cultivares: Quilmes Ayelén, Perún (susceptibles a mancha en red) CLE 233 (moderadamente resistente a mancha en red)

Semilla curada (carbendazim+tiram+iprodione 2.5cc/kg semilla)/Semilla no curada

Análisis sanitario de la semilla previo a ser curada:

Cultivar	D. teres*	B. sorok.**	Fusarium	Altern.	Asperg.	Penic.	Cladosp.spp
	(%)	(%)	spp. (%)	spp (%)	spp (%)	spp (%)	(%)
Q. Ayelén	3	30	33	37	24	21	3.5
Perún	7	25	44	54	32	21	0.5
CLE 233	0.5	26	45	28	33	3	0.5

^{*} Agente causal de Mancha en Red

Con/Sin rastrojo de cebada infectado (200g/m²) - Análisis sanitario del rastrojo:

185 pseudotecios de D. teres/g

6000 esporas de D. teres/q

500 esporas de B. sorokiniana/g

7200 esporas de Fusarium spp./g

Presencia de peritecios de Fusarium graminearum

• Con/Sin aplicación de fungicida: Opera 1 l/ha, a niveles críticos de infección.

² Mejoramiento Genético Cebada, INIA La Estanzuela

^{**} Agente causal de Mancha Borrosa

¹ Protección Vegetal, INIA La Estanzuela

	QAy	QAy	QAy	QAy	Per	Per	Per	Per	C233	C233	C233	C233
Sin rastrojo	S/cur	S/cur	C/cur	C/cur	S/cur	S/cur	C/cur	C/cur	S/cur	S/cur	C/cur	C/cur
•	S/fun	C/fun	C/fun	S/fun	S/fun	C/fun	S/fun	C/fun	S/fun	C/fun	S/fun	C/fun
	QAy	QAy	QAy	QAy	Per	Per	Per	Per	C233	C233	C233	C233
Con rastrojo	S/cur	S/cur	C/cur	C/cur	S/cur	S/cur	C/cur	C/cur	S/cur	S/cur	C/cur	C/cur
	S/fun	C/fun										

CONTROL DE GRAMÍNEAS EN TRIGO Y CEBADA

Amalia Rios¹

OBJETIVO: Evaluar la susceptibilidad de cebada y trigo y el control de raigras y balango con herbicidas aplicados en distintos momentos, solos y en mezclas, y a diferentes dosis.

EXPERIMENTO EN CEBADA

Materiales y Métodos:

Ubicación: Chacra 34 a

Siembra: 18/06/04

Cultivar: MUSA 936, 100 kg/ha

Fertilización: sobre la base de análisis de suelo a la siembra fosfato de Amonio a

100 kg/ha

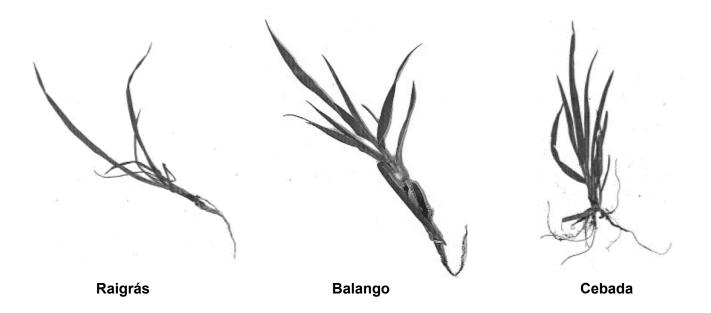
Refertilización sobre la base de análisis de planta urea 150 kg/ha el 3/08/04

Las aplicaciones del herbicida se realizaron en dos fechas:

26 de julio y el 10 de agosto, los estadios del cultivo, el balango y el raigras al momento de las aplicaciones se visualizan en la FIGURA 1.

Los tratamientos evaluados fueron:

♦ PUMA EXTRA (fenozaprop – p- etil 6.9 %) a 0.75 y 1.0 L PC/ha.


A los tratamientos de PUMA EXTRA se les aplicó 2,4.D + Tordon 24 K 1.0 + 0.1 L/ha para el control de malezas de hoja ancha

3

¹ Ing. Agr. M. Sc. Dr. Sc., INIA La Estanzuela

CEBADA

APLICACIÓN DEL 26 DE JULIO DE 2004

APLICACIÓN DEL 10 DE AGOSTO DE 2004

Figura 1: Estadios de cebada, raigras y balango al momento de las aplicaciones.

EXPERIMENTOS EN TRIGO

En trigo se evaluaron varios herbicidas solos y en mezcla, las condiciones de manejo comunes a los distintos experimentos se reseñan a continuación:

Materiales y Métodos:

Ubicación: Chacra 34 a

Siembra: 18/06/04

Cultivar: Churrinche, 100 kg/ha

Fertilización: sobre la base de análisis de suelo a la siembra fosfato de Amonio a

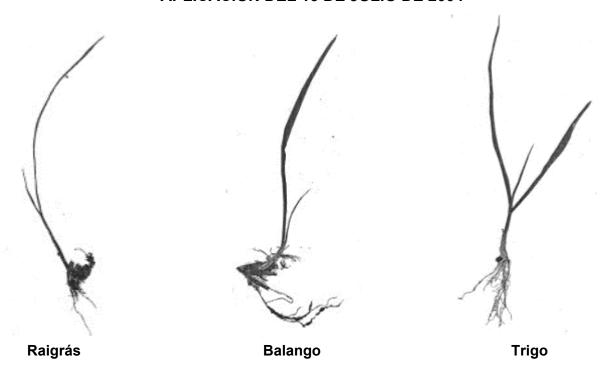
100 kg/ha

Refertilización en base a análisis de planta, urea 200 kg/ha el 3/08/04

EXPERIMENTO CON PUMA EXTRA

Las aplicaciones del herbicida se realizaron en dos fechas:

26 de julio y el 10 de agosto, los estadios del cultivo, el balango y el raigras al momento de las aplicaciones se visualizan en la FIGURA 2 y 3.

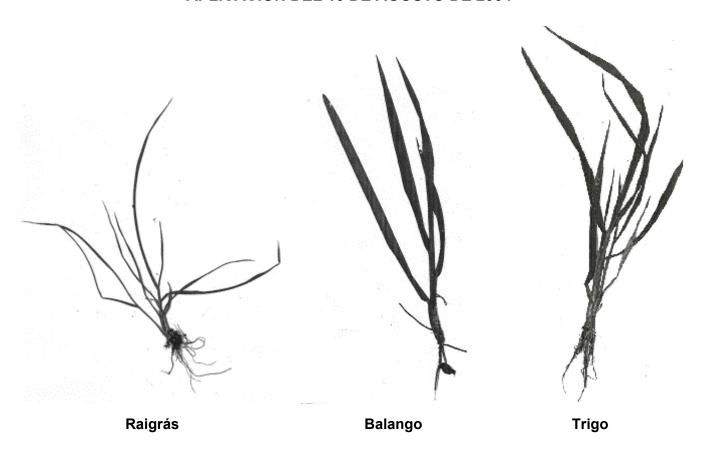

Los tratamientos evaluados fueron:

♦ PUMA EXTRA (fenozaprop – p- etil 6.9 %) a 0.75 y 1.0 L PC/ha.

A los tratamientos de PUMA EXTRA se les aplicó 2,4.D + Tordon 24 K 1.0 + 0.1 L/ha para el control de malezas de hoja ancha

Se incluyó un testigo con control de malezas de hoja ancha donde se aplicó 2,4.-D y Tordon 24K, uno con control de gramíneas con lloxan a 2 L PC/ha, y además un testigo enmalezado.

TRIGO APLICACIÓN DEL 13 DE JULIO DE 2004



APLICACIÓN DEL 26 DE JULIO DE 2004

Figura 2: Estadios fenológicos de trigo, raigras y balango al momento de los tratamientos químicos.

TRIGOAPLICACIÓN DEL 10 DE AGOSTO DE 2004

Figura 3: Estadios fenológicos del trigo, raigras y balango al momento de la aplicación de agosto.

EXPERIMENTO CON EVEREST Y FINESSE

Las aplicaciones del herbicida se realizaron en dos fechas:

13 y 26 de julio, los estadios del cultivo, el balango y el raigras al momento de las aplicaciones se visualizan en la FIGURA 2.

Los tratamientos de herbicidas evaluados fueron:

- ◆ FINESSE (clorsulfuron 62% + metsulfuron 12.5%)
- ♦ EVEREST (flucarbazone 75 %)

Tratamientos	Momento	Dosis g PC/ha
FINESSE+EVEREST	13 de julio	15+30
FINESSE+EVEREST	"	15+45
FINESSE+EVEREST	"	15+60
FINESSE+EVEREST	"	20+30
FINESSE+EVEREST	"	20+45
FINESSE+EVEREST	"	20+60
FINESSE+EVEREST	26 de julio	15+45
FINESSE+EVEREST	"	15+60
FINESSE+EVEREST	"	15+75
FINESSE+EVEREST	ű	15+90

Se incluyó un testigo limpio de malezas con aplicación de lloxan a 2 L/ha el 30 de julio, complementando con finesse a 20 g/ha el 4 de agosto. Se incluyó un testigo enmalezado.

EXPERIMENTO CON TOPIK

Las aplicaciones del herbicida se realizaron en dos fechas:

26 de julio y el 10 de agosto, los estadios del cultivo, el balango y el raigras al momento de las aplicaciones se visualizan en la FIGURA 2 y 3.

Los tratamientos de herbicidas evaluados fueron:

◆ TOPIK (clodinafop- p 8% + cloquintocet-m 2%)

Las dosis evaluadas el 26 de julio fueron: 0.15 y 0.20 L/ha

Las dosis evaluadas el 10 de agosto fueron: 0.20 y 0.25 L/ha

Tecnología para altos rendimientos de Trigo

Adriana García Lamothe¹ Martha Díaz de Ackermann²

Objetivo:

El objetivo principal del proyecto es proveer al productor de nuevos elementos para la toma de decisiones de manejo del cultivo de trigo en sistemas de producción intensivos. Los objetivos específicos: a) caracterizar la respuesta a N en rendimiento, el potencial de diferentes materiales y su aptitud para un manejo intensivo; b) cuantificar el efecto de la interacción entre la respuesta a N y el control de enfermedades; c) determinar el efecto de los tratamientos de fertilización y de control sanitario sobre parámetros de calidad del grano.

Características generales del trabajo

El trabajo consta de dos experimentos, uno con cultivares de ciclo intermedio a largo (Ex I) y otro con cultivares de ciclo intermedio a corto (Ex II), los que se instalaron en La Estanzuela, en un campo incorporado a siembra directa en la primavera del 2003 cuando se sembró Moa. Los datos de análisis de suelo figuran en el cuadro 1.

Cuadro 1. Resultados del análisis de suelo previo a la siembra

pH (H ₂ O)	C. Orgánico %	P Bray I μg P/g	PMN mg/Kg N-NH4	N-NO ₃ μg N/g	S-SO ₄ μg N/g
5.9	2.14	24	20	8	14

El 7 de junio se sembró el Ex I y el 15 de julio el Ex II con equipo experimental para siembra directa sobre los residuos secos de la forrajera, a una densidad de 300 y 325 semillas viables /m² respectivamente. El control de malezas se hizo a 3 hojas con Finesse (18 g/ha) y Hussar (90 g/ha).

Los tratamientos consisten en una combinación factorial de 4 cultivares (Ex I) y 3 cultivares (Ex II) por 4 niveles de N, y 3 estrategias de protección sanitaria.

Niveles de N: 0 - 60 - 120 y 180 kg/ha;

60 kg/ha se aplicaron al inicio del macollaje (Z21), el resto en los tratamientos más altos a Z31.

Protección sanitaria:

- Sin protección,
- Con protección total. Aplicaciones cada 3 semanas de fungicida iniciadas a 2 nudos; Allegro (1 l/ha) para controlar manchas foliares y royas, a antesis Caramba (1 lt/ha) para prevenir fusariosis de espiga.
- Con protección estratégica decidida según el nivel de infección en el cultivo, su susceptibilidad y las condiciones ambientales.

¹ Ing. Agr., MSc., Suelos, INIA La Estanzuela

² Ing. Agr., MSc., Protección Vegetal, INIA La Estanzuela

Cultivares: INIA Torcaza, INIA Gorrión, Baguette 10, INIA Tijereta de ciclo largo y de ciclo intermedio: Baguette 13, INIA Churrinche y Onix.

Nutrición mineral y necesidad de fertilizantes:

Los requerimientos nutricionales del cultivo bajo siembra directa no tiene por qué diferir de los requerimientos con laboreo convencional si el rendimiento es igual, pero la disponibilidad de los nutrientes para el cultivo puede ser diferente ya que el ambiente en el que crecen no es el mismo. Existen diferencias en temperatura del suelo, pH, población microbiana, aireación, entre otros tantos factores, que afectan el aporte de nutrientes del suelo y/o la capacidad de la planta de acceder a ellos. En el caso particular del N, resultados experimentales indicarían que en siembra directa la disponibilidad de N en etapas tardías es menor que en convencional lo que afecta negativamente la calidad del grano. También la disponibilidad de otros nutrientes puede verse reducida, esto se ha observado para Zn, aunque aparentemente es más probable la ocurrencia de deficiencia compleja (no atribuible a un único micronutriente). El objetivo general de este proyecto es identificar deficiencias nutricionales que puedan limitar el rendimiento o la calidad del grano en sistemas bajo siembra directa y evaluar la factibilidad de corregirlas. Los objetivos específicos del trabajo son: determinar si un fertilizante nitrogenado de liberación lenta puede suministrar N al cultivo en forma sincronizada con la demanda, mejorando así la eficiencia de la fertilización en comparación con la urea a la siembra o fraccionada; y si hay respuesta de algún tipo a la aplicación foliar de micronutrientes.

Características generales del trabajo:

En el campo experimental de cultivos se instalaron 2 experimentos, uno con I. Gorrión y otro con I. Churrinche, los que se sembraron el 7/6 y 15/7 respectivamente.

Tratamientos:

Factorial de 6 niveles de N (0 –30- 60- 90 – 120 y 150 kg/ha) a la emergencia del cultivo x 2 fuentes de N (urea y Entec: fertilizante de liberación lenta*)

Además:

Aplicaciones de N como urea fraccionada (emergencia - inicio de encañado)

60 + 30 kg de N/ha

60 + 60

60 + 90

60 +120

Estos últimos tratamientos con o sin aplicación de micronutrientes (Fertrilon Combi^{**}, 2 aplicaciones de 0.75 kg/ha, solución al 0.2%).

Los tratamientos están dispuestos en bloques al azar con 3 repeticiones.

El cultivo fue tratado con Caramba a antesis (1 lt/ha).

Entec: fertilizante con una molécula inhibidora de la nitrificación (DMPP, 3,4-dimetilpirazolfosfato).

^{**} Fertrilon Combi: fertilizante que aporta micronutrientes (Mn, Fe, Cu, Zn, B, Mo) y también manganeso y azufre en forma de quelatos para facilitar la absorción y translocación en la planta.

APLICACIÓN DE FUNGUICIDAS EN CULTIVARES DE CEBADA

Silvia Pereyra¹ Marina Castro² Néstor Gonzalez¹

Objetivos:

 Determinar el manejo de aplicación de funguicidas para distintos cultivares de cebada cervecera

Materiales y métodos:

Fecha de siembra: 17 de junio de 2004

Fecha de emergencia: 29/06

Fertilizaciones: 30 kg N/ha (siembra), 35 kg N/ha (Z22), 35 kg N/ha (Z30)

Herbicidas: Starane (300cc/ha), Glean (15 g/ha)

Insecticida: 04/10 Nomolt (80 cc/ha)

Diseño experimental: parcelas divididas en bloques al azar con 3 repeticiones

Cultivares: 1. Ac 92-5943-4 (MOSA) 5. CLE 233 (INIA)

Ac 89-5197-3 (MOSA)
 CLE 203 (INIA Aromo) (INIA)
 Quilmes Ayelén (MOSA)
 CLE 202 (INIA Ceibo) (INIA)

4. Danuta (MOSA)

Tratamiento del funguicida:

A. Sin aplicación de funguicida

B. Control Estratégico: A nivel crítico de enfermedades (roya de la hoja, mancha en red) se aplicó Opera (1l/ha). A espigazón (50% de espigas fuera de la vaina) se aplicó Caramba (1l/ha) para control de fusariosis de la espiga.

06/09 Opera - CLE233, CLE203, CLE202, Ac 92-5943-4, Ac 89-5197-3, Q. Ayelén

14/09 Opera - Danuta

04/10 Opera - CLE 203, CLE 202, Q. Ayelén

08/10 Caramba - CLE 233, Ac 92-5943-4, Ac 89-5197-3, Danuta

14/10 Caramba - CLE 203, CLE 202, Q. Ayelén

C. Control Total: Desde macollaje/fin de macollaje (26/08) con la aparición de primeras pústulas de roya de la hoja y primeros síntomas de mancha en red se aplicó Opera (1l/ha). Desde entonces, aplicaciones periódicas cada 21 días. A espigazón (50% de espigas fuera de la vaina) se aplicó Caramba (1l/ha) para control de fusariosis de la espiga.

																		i I	1	1
					l	l													i '	
5R	5A	5C.	7Α	7R	17C.	12R	2A	2C	1C.	1R	1A	3R	3C.	3A	6C.	6A	6R	14A	4R	4C
OD	Ο, ι		,,,	, ,	, 0		<i>_</i> , ,			ייי	17 \	OD		٠, ١	00	0, 1	OD	١,,,	ן טיין	
																		į į	1 /	ı

¹ Protección Vegetal, INIA La Estanzuela

² Evaluación de cultivares, INIA La Estanzuela

MEJORAMIENTO GENÉTICO DE TRIGO

1. PARCELAS DEMOSTRATIVAS DE TRIGO EN CONDICIONES DE CHACRA EN LA ESTANZUELA*

I. INTRODUCCION

Esta actividad, que se vienen llevando desde hace varios años en La Estanzuela, tiene como objetivos principales:

- Generar información de chacras que, usada conjuntamente con la información obtenida en microparcelas experimentales, puede ser de mucha utilidad en el momento de decidir sobre la liberación de nuevos cultivares de trigo.
- Usar con fines demostrativos, parcelas que son implantadas con maquinaria de campo y manejadas de acuerdo a las recomendaciones existentes.

En la conducción de estos trabajos se está siguiendo una secuencia que está integrada por una actividad de difusión en el mes de abril, en la cual se dan a conocer los resultados del año anterior, se discuten los mismos y, sobre esta base, se planifica la siembra de las parcelas del año en curso. La otra actividad es un día de campo, como el de hoy, en el cual se observan los diferentes cultivares, intercambiando información y opiniones sobre los mismos.

Este año se cuenta con siete cultivares diferentes, de los cuales cuatro son comercial y tres son líneas experimentales precomerciales.

El manejo de la fertilización se efectuó con el criterio de que no fuera limitante para la expresión de potenciales de rendimiento, por lo tanto, los niveles de fósforo y/o de nitrógeno aplicados pueden estar por encima de los recomendados para chacra. En todos los cultivares se trató una parte de la parcela con fungicida, como tratamiento preventivo para fusariosis de la espiga y, de esa manera, observar diferencias con la parte sin tratar. Previo a espigazón, en ningún caso fue necesario usar fungicida para controlar enfermedades foliares.

12

^{*} Responsables: Ing. Agr. M Sc. Rubén P. Verges, Ing. Agr. Martín Quincke.
Colaboradores: Ing. Agr. M Sc. Martha Díaz de Ackermann, Ing. Agr. Ph D. Silvia Germán

II. PLANO DE SIEMBRA

La Estanzuela	ORDEN DE SIEMBRA	CICLO	CULTIVAR	DENSIDAD (kg/há) (*)	PLANTAS POR METRO LINEAL	FECHA ESPIGAZON	FECHA FUNGICIDA
↑	1	CORTO	LE 2249 INIA CHURRINCHE	115	141	7/10	8/10
↑	2	INTERMEDIO	LE 2310	130	123	11/10	15/10
↑	3	INTERMEDIO	LE 2303	120	105	13/10	15/10
↑	4	LARGO	LE 2309	125	94	17/10	22/10
↑	5	LARGO	LE 2271 INIA TORCAZA	100	135	16/10	22/10
↑	6	LARGO	LE 2255 INIA GAVILAN	110	118	17/10	22/10
Ruta 50	7	LARGO	LE 2245 INIA GORRION	105	129	17/10	22/10

^(*) Calculada sobre la base de 330 semillas viables por metro cuadrado.

III. REFERENCIAS

LUGAR: La Estanzuela, Chacra 2. **SISTEMA DE SIEMBRA**: Directa

FECHA DE SIEMBRA: Ciclo largo: 17/05; Ciclos intermedio y corto: 16/06

TAMAÑO DE PARCELA: 9,0 x 50,0 metros.

FERTILIZACIÓN: Ciclo largo: 165-96-00 NPK (150 kg/há de 18-46-00 NPK a la

siembra + 100 kg/há de urea el 23/07 + 200 kg/há de urea el 26/08).

Ciclos intermedio y corto: 165-96-00 NPK (150 kg/há de 18-46-00 NPK a la

siembra + 100 kg/há de urea el 26/08 + 200 kg/há de urea el 22/09).

CONTROL DE MALEZAS: 30 gr/há de Glean más 100 gr/há de Hussar.

CONTROL DE ENFERMEDADES: Para control de fusariosis de la espiga, una parte de la parcela de cada cultivar fue tratada con 1 lt/há de Caramba en inicio de floración.

HISTORIA DE LA CHACRA: 2002 y 2003: Trébol rojo.

ANÁLISIS DE SUELO:

	22/03/04												
рН	C.Org	N-NO3	Bray I	K									
(H2O)	%	μg N/g	μg P/g	meq/100g									
5,6	2,1	20,2	11,4	0,9									

2. COLECCIÓN DE VARIEDADES DE TRIGO LIBERADAS POR LA ESTANZUELA*

I. INTRODUCCION

En el presente año, La Estanzuela está cumpliendo 90 años de vida y una de las actividades que ha mantenido permanente vigencia durante todo este período es la de mejoramiento genético de trigo.

En realidad, los trabajos en La Estanzuela comenzaron con esta actividad, conducida directamente por su fundador el Dr. Alberto Boerger, quien aplicando metodologías científicas fue el primero en liberar comercialmente una variedad mejorada de trigo para el Uruguay.

Esa primera variedad se denominó Americano 26 N, fue lanzada al mercado en el año 1918 y, a partir de ese momento, La Estanzuela ha liberado alrededor de 50 variedades de trigo al mercado uruguayo, cuya lista se incluye a final de este trabajo.

Con la finalidad de observar la evolución ocurrida en el tipo de variedades creadas en este largo período por La Estanzuela, se ha conformado una colección integrada por aquellas que fueron más representativas en cada década, a través de estos 90 años.

II. REFERENCIAS

AÑO LIBERACION	CULTIVAR
1918	AMERICANO 26 N
1926	ARTIGAS
1938	LITORAL PRECOZ
1946	PETIRROJO
1958	MULTIPLICACION 14
1966	ESTANZUELA.SABIA
1974	ESTANZUELA.TARARIRAS
1981	ESTANZUELA DORADO
1985	ESTANZUELA.CARDENAL
1987	ESTANZUELA FEDERAL
1995	INIA MIRLO
1997	LE 2210-INIA TIJERETA
2000	LE 2249-INIA CHURRINCHE
2002	LE 2271-INIA TORCAZA

Siembra: 08/07/04 Sistema: Directa

Control de malezas: 100 gr/há de Hussar + 30 gr/há de Glean el 30/08

Fertilización: 150 kg/ha de urea el 03/08 + 100 kg/há de urea el 22/09

Control de enfermedades: A media parcela de cada cultivar se le aplicó 1 lt/há de Caramba.

* Responsables: Ing. Agr. M Sc. Rubén P. Verges, Ing. Agr. Martín Quincke.

ANEXO

PARCELAS EN CONDICIONES DE CHACRA EN LA ESTANZUELA **AÑO 2003**

1. RENDIMIENTO DE GRANO Y PARÁMETROS DE CALIDAD FÍSICA E INDUSTRIAL

CULTIVAR	REND.	P. H.	PROT.	W
I. GORRION+F	6170	78,0	11,7	325
I. GORRION	5925	75,7	12,9	322
I. GAVILAN+F	5579	72,6	13,2	337
I. TIJERETA	5361	77,8	11,2	247
I. CABURE+F	5284	73,4	11,7	207
I. CHURRINCHE+F	5273	77,0	11,6	230
I. TORCAZA	5273	75,0	12,2	163
I. TIJERETA +F	5206	80,2	11,4	259
I. MIRLO+F	5106	77,7	12,5	210
I. TORCAZA+F	5028	76,3	11,5	222
I. MIRLO	5017	76,1	11,0	214
I. CHURRINCHE	4864	77,1	11,2	243
I. GAVILAN	4817	76,0	11,7	252
I. CABURE	4484	75,5	11,5	172
MEDIA	5242	76,3	11,8	243

+ F: Tratado con fungicida. Rend.: Rendimiento de grano (kg/há) sobre muestra sucia.

P:H.: Peso hectolítrico sobre muestra sucia.

Prot.: % de proteína en grano.

W: Fuerza panadera

Fuente: Proyecto Mejoramiento Genético de Trigo y Triticale. INIA.

2. COMPORTAMIENTO SANITARIO

		29/	09/03		2	0/10/0	3		13/1	1/03		03/12/03	%GRANO/FUS	%GRANO/FUS
CULTIVAR	EV	MF	RH	Bacteria	EV	MF	RH	ΕV	MF	RH	Fus	Observaciones	NUMERO	PESO
I. Tijereta +F								LP	Т	0	0			
I. Tijereta	2-3N	5 S	0	5	25%E	5 S	0	LP	4/2 10 seco	0	T/1		1.33	1.1
I. Gorrión +F								AL	3/2 5	0	0			
I. Gorrión	2N	TS	0	2	10%E	2 S	TMR	AL	4/4 20 S	TMR	0		2.00	1.4
I. Gavilán +F								AL	2/1 2 D	0	T/1	T Fus		
I. Gavilán	3N	0	0	3	25%E	3 S	0	AL	4/4 20 P	0	T/1		10.00	7.1
I. Torcaza +F								L	2/1 2 D	0	0			
I. Torcaza	2N	Т	0	Т	10%E	2 S	0	L	5/4 20 seco	0	0	flecking	1.33	1.0
I. Caburé +F								Α	2/1 2	2 MR	0			
I. Caburé	MAC	TS	0	0	НВ	2 S	0	Α	4/3	5 MR-MS	T/1	flecking	8.33	9.1
I. Mirlo +F								Р	2/1 2 D	0	0			
I. Mirlo	1N	TS	0	Т	FFL	1/1 S	0	Р	3/2 5 D	T MS	0		0.66	1.4
I. Churrinche +F								AL	Т	0	T/1			
I. Churrinche	1N	TS	0	0	EMB	1/1 S	0	AL	3/2 5 SD	0	T/1	flecking	4.66	2.1

+F: Con aplicación de funguicida.

Aplicaciones de Caramba: 20/10: I. Mirlo

24/10: I. Churrinche, I. Torcaza, I. Gavilán, I. Gorrión e I. Tijereta

31/10: I. Caburé

Fuente: Martha Díaz de Ackermann

CULTIVARES DE TRIGO LIBERADOS POR LA ESTANZUELA DESDE 1918 A LA FECHA

AÑO	OU TWAS	0.01.0
AÑO	CULTIVAR	CICLO
1918	Americano26n	Intermedio
1918	Americano44d	Intermedio
1918	Pelón 33c	Intermedio
1926	Artigas	Intermedio
1926	Larrañaga	Intermedio
1926	Pelón IV	Intermedio
1931	Acd 11	Intermedio
1933	Centenario	Intermedio
1933	Porvenir	Intermedio
1933	Renacimiento	Intermedio
1934	Litoral	Intermedio
1935	Litoral II	Intermedio
1936	Litoral I	Intermedio
1938	Litoral Precoz	Intermedio
1939	Petiso	Intermedio
1939	Pelón Plateado	Intermedio
1946	Petirrojo	Intermedio
1946	Petiblanco	Intermedio
1955	DP	Intermedio
1955	DQ	Intermedio
1958	Multiplicación 11	Intermedio
1958	Multiplicación 14	Intermedio
1966	Estanzuela Zorzal	Intermedio
1966	Estanzuela Sabiá	Intermedio
1968	Estanzuela Dakurú	Intermedio
1974	Estanzuela Dolores	Corto
1974	Estanzuela Young	Intermedio
1974	Estanzuela Tarariras	Intermedio
1979	Estanzuela Lusitano	Intermedio
1980	Estanzuela Hornero	Intermedio
1981	Estanzuela Dorado	Largo
1985	Estanzuela Cardenal	Corto
1986	Estanzuela Calandria	Largo
1987	Estanzuela Federal	Largo
1988	Estanzuela Jilguero	Corto
1989	Estanzuela Benteveo	Corto
1989	Estanzuela Chajá	Largo
1990	Estanzuela Pelón 90	Intermedio
1991	Estanzuela Colibrí	Corto
1991	Estanzuela Halcón	Largo
1995	INIA Mirlo	Corto
1997	LE 2210-INIA Tijereta	Largo
1998	LE 2193-INIA Caburé	Intermedio
1998	LE 2172-INIA Boyero	Corto
2000	LE 2245-INIA Gorrión	Largo
2000	LE 2249-INIA Churrinche	Corto
2001	LE 2255-INIA Gavilán	Largo
2002	LE 2271-INIA Torcaza	Largo
2002		1-4.90

Fuente: R. Verges, 2003

MEJORAMIENTO GENETICO DE CEBADA PARCELAS EN CONDICIONES DE CHACRA

Juan E. Díaz¹ Silvia Germán¹ Silvia Pereyra²

Este año se incluyen por primera vez un cultivar y una línea experimental de cebada en las parcelas demostrativas. El objetivo de estas parcelas es ofrecer a agricultores y técnicos la oportunidad de observar los nuevos cultivares y las líneas experimentales promisorias en parcelas cuyo tamaño permite simular el comportamiento en condiciones de producción comercial. Estas parcelas demostrativas fueron sembradas en tres localidades: Young, Dolores y La Estanzuela. A continuación se detalla la secuencia de labores correspondientes a La Estanzuela.

Cultivo antecesor: trébol rojo

Sistema de siembra: siembra directa

Fertilización a primera siembra: 16 de junio, 150 kg 18-46-0

Herbicida total: 16 de julio, glifosato 3l/Ha

Fecha de resiembra: 20 de julio

Densidad de siembra: 43 semillas / metro lineal (Germinación: 90 %, Implantación: 90%)

Herbicida postemergente: 23 de setiembre, Glean 20g/Ha + Hussar 90g/Ha

Refertilización: 23 de setiembre, urea 100 kg/Ha

INIA Ceibo (CLE 202)

Pedigree: FNC I 22 / Defra Ciclo Intermedio-Largo

Ingreso al Programa Nacional de Evaluación de Cultivares: 1998

Area sembrada: 2001 3.000 Has (2%)

2002 21.000 Has (17%) 2003 35.000 Has (25%)

INIA Aromo (CLE 203)

Pedigree: CLE 150 // LBP 14376 / LBP 2646

Ciclo Intermedio-Corto

Ingreso al Programa Nacional de Evaluación de Cultivares: 1999

¹ Mejoramiento Genético, INIA La Estanzuela

² Fitopatología, INIA La Estanzuela