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Introduction 
Genomic evaluations are currently performed using multiple step procedures (Hayes et al. 
(2009); VanRaden et al. (2009)). A typical evaluation requires 1) traditional evaluation with 
an animal model, 2) extraction of pseudo-observations such as deregressed evaluations, 3) 
estimation of genomic effects for genotyped animals, and possibly 4) combining the genomic 
index with traditional parent averages and breeding values (Hayes et al. (2009); VanRaden et 
al. (2009)). Genomic effects also can be estimated with a simple model that includes a 
genomic relationship matrix derived from genotypes and variances of the SNP marker effects 
(Nejati-Javaremi et al. (1997); VanRaden (2007)).  

Recently, Misztal et al. (2009) proposed a single-step procedure (SSP) for genetic evaluation 
in which the pedigree-based relationship matrix is augmented by contributions from the 
genomic relationship matrix. Legarra et al. (2009) derived a joint relationship matrix based 
on pedigree and genomic relationships. An inverse of such joint relationship matrix allows 
straightforward application of the single-step approach in genetic evaluations (Aguilar et al. 
(2010); Christensen and Lund (2010)). 

VanRaden (2008) presented methods to create genomic relationship matrices. The kernel of 
such methods involves a matrix multiplication operation. Specific subroutines for such 
operations are already available (Basic Linear Algebra Subroutines BLAS; Dongarra et al. 
(1988). An optimized version of BLAS subroutines (Automatically Tuned Linear Algebra 
Software, ATLAS; Whaley & Dongarra (1998)) allows taking into account features of a 
specific processor (memory speed and cache size) in several such subroutines. 

Modifications of current software for genetic evaluations and variance component estimation 
to implement SSP (Aguilar et al. 2010) require inverses of the genomic relationship matrix 
and the relationship matrix for genotyped animals. The objectives of this research were to 
present efficient computing options to create such relationships matrices based on genomic 
markers and pedigree information, as well as their inverses. 

Material and methods 
Data. Creation of the genomic relationship matrix (G) was based on simulations. A matrix of 
incidences of SNP maker information (Z) was simulated for a panel of 40K SNPs, with 
values corresponding to gene content of the second allele (0, 1 and 2). Number of genotyped 
animals varied from 1,000 to 30,000. Pedigree-based relationship matrix (A22) was 
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constructed using a pedigree data of 9,100,106 US Holstein provided by Holstein USA Inc. 
(Brattleboro, VT). 

Methods. Let the inverse of the joint relationship matrix based on both pedigree and 
genomic information (Aguilar et al. (2010); Christensen and Lund (2010)): 
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where A-1 is the inverse of the numerator relationship matrix, G-1 is the inverse of the 
genomic relationship matrix and  is the inverse of the relationship matrix based on 
pedigree information corresponding to the genotyped animals. 

Following VanRaden (2008), genomic relationships (G) were created as: G = ZZ’/k; where k 
is a scaling parameter and Z is an incidence matrix for SNP effects with elements equal to 
the number of copies of second allele and centered by the allele frequency. Computations of 
ZZ’/k were computed in Fortran 95 by several methods: 1) a simple three “do” loops, with 
centering the matrix Z through indirect memory access and scaling within loops (ORIG); 2)  
modification to optimize the indirect memory access (OPTM); and 3) OPTM plus 
reorganization of loops, and exclusion of the scaling operation from the main loop 
(OPTML). Having separate operations for matrix multiplication and scaling allows using 
general subroutines to compute ZZ’. Also, matrix multiplications of the form ZZ’ were 
computed by OPTML, by the original BLAS subroutine DGEMM, and by their optimized 
versions as in ATLAS or in Intel’s Math Kernel Library (MKL). 
 
Matrix inversion was by a converted Fortran 95 code of a generalized inverse algorithm from 
the BLUPF90 package (Misztal et al. 2002) and by the LU factorization as implemented in 
LAPACK (Anderson et al. 1990). Such subroutines are available either in ATLAS or in 
MKL libraries.  

Creation of the based-pedigree relationship matrix for genotyped animals (A22) was 
evaluated using two methods. The first method was using the tabular method and the second 
was following formulas as presented in Misztal et al. (2009), which use the algorithm of 
Colleau (2002). 

Computations. All programs were run on an Opteron 64-bit processor with a clock speed of 
3.02 GHz and a cache size of 1Mbyte. Some programs were also run on a Xeon 64-bit 
processor with a clock speed of 3.5 GHz and a cache size of 6Mbytes.  

Results and discussion 
Results using the alternative loop codes are presented in Table 1. Computing time using 
ORIG was 10 times slower on the Opteron system, most likely because of its lower cache 
memory. Large improvement was achieved with the OPTM on the Opteron but not the 
Xenon system. An alternative explanation is that the Intel compiler that was used in the study 
was efficient in optimizing codes on Xenon but not on Opteron systems. Almost 4 times 
speedup was obtained on both computers with OPTML.   



Figure 2 shows the computing time for OPTML, the BLAS subroutine for matrix 
multiplication (DGEMM), and its optimized version as in ATLAS libraries. The lowest 
computing time was with ATLAS-DGEMM subroutines. The performance of the OPTML 
shows a trend similar to ATLAS-DGEMM, but slightly slower.  

Table 1: Computing time (m) for alternative codes for creation of the G matrix1 on 
different machines. 
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Xeon 3.5 GHz 6 Mbyte 24 26 7 
Opteron 3.02 GHz 1 Mbyte 265 59 17 

 
1 using 6,500 animals and 40K SNP markers  
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Figure 2. Computing time using different 
matrix multiplications algorithms 

 
Figure 3. Speedup for optimized 
DGEMM for multiple processors 
using OpenMP

Matrix multiplication with large matrices requires optimization to fully utilize the cache 
memory. This operation requires fine tuning for specific system architectures. Simple 
modifications (OPTM) were successful in reducing the run time. Also, a simple 
rearrangement of the codes allow the compiler to do an automatic optimization 
(vectorization) and speed-up computations from 4 to 15 times, depending on the processor. 
However, using automatic code generation as in ATLAS-DGEMM results in a code that runs 
faster with no additional programming. 

Optimized implementation of DGEMM in MKL allows parallel processing. Figure 3 shows 
the results for the optimized implementation of DGEMM in the MKL using up to 4 
processors. The speedup with 3 processors and 5000 genotypes was 2.93, which was close to 
an ideal one. 

Inversion of matrices for different number of genotypes was always faster using LAPACK 
compared with the generalized inverse. For the largest genomic relationship matrix (30,000 
animals) the inversion took approximately 13 h with the generalized inverse but only 3.4 h 
using the optimized version of LAPACK. Further reductions in computing time could be 



obtained by parallel processing using OpenMP directives. A speed up of 3.35 was attained 
using four processors and the largest matrix.  

Creation of the relationship matrix based on pedigree information for 6500 genotyped 
animals using the tabular method requires 311 s and 12.1 Gbyte of memory. The same 
computations with the Colleau method (2002) require 45 s and 322 Mbyte. The tabular 
method uses more memory as it requires storage for a dense matrix for all genotyped animals 
and their ancestors (approximately 57,000 individuals for 6,500 genotyped animals) while 
the Colleau method needs only a few vectors with dimension equal to the number of 
genotyped animals. Memory requirements for the tabular method can be reduced by splitting 
the pedigree file in several groups, but at cost of additional computations (VanRaden, 
personal communication, 2009). 

Conclusion 
We presented methods for efficient creation of matrices required for an efficient 
implementation of the single-step evaluation. Optimizations were by modifications of the 
existing code, using the efficient automatic optimization provided as open source software, 
or by commercial libraries. With all the optimizations, the creation of the genomic 
relationship matrix for 30,000 animals with 40K SNPs each, takes about 1 hr, with a similar 
time to obtain its inverse.  

Acknowledgments 
This study was partially funded by the Holstein Association USA Inc. and by AFRI grants 
2009-65205-05665 and 2010-65205-20366 from the USDA NIFA Animal Genome Program. 
The authors thank P.M. VanRaden from Animal Improvement Programs Laboratory, USDA 
(Beltsville, MD), for providing the original software.  

References 
Aguilar, I., Misztal I., Johnson D. L. et al. (2010). J. Dairy Sci. 93: 743–752. 
Anderson, E., Bai, Z., Dongarra, J. et al (1990) In Proc ACM/IEEE Conference.2-11 
Christensen, O. F., Lund, M. S. (2010). Genet. Sel. Evol., 42–2 
Colleau, J. J. (2002)  Genet. Sel. Evol. 34:409–421 
Dongarra, J., Croz, J., Hammarling, S. et al. (1988). ACM Trans. Math. Softw. 14, 1–17. 
Hayes, B. J., P. J. Bowman, A. J. Chamberlain et al. (2009). J. Dairy Sci. 92:433–443. 
Nejati-Javaremi, A., C. Smith, J. P. Gibson (1997).  J. Anim. Sci. 75, 1738–1745. 
Legarra, A., Aguilar, I., Misztal, I. (2009). J. Dairy .Sci., 92:4656–4663. 
Misztal, I., S. Tsuruta, T. Strabel, et al. (2002). In Proc7th WCGALP. 28–07 
Misztal, I., A. Legarra, I. Aguilar. (2009). J. Dairy Sci. 92: 4648–4655. 
VanRaden, P. M. (2007). Interbull Bull. 37, 33–36. 
VanRaden, P. (2008). J. Dairy Sci., 91:4414-4423. 
VanRaden, P. M., Van Tassell, C. P., Wiggans, G. W. et al. (2009). J. Dairy Sci. 92:16–24. 

Whaley, R. C., Dongarra, J. (1998). In Proc ACM/IEEE Conference (CD-ROM) 


	Conclusion
	Acknowledgments

