
Efficient Computations of Genomic Relationship
Matrix and other Matrices Used in the Single-Step

Evaluation
I. Aguilar* †, I. Misztal*, A. Legarra‡ and S. Tsuruta*

Introduction
Genomic evaluations are currently performed using multiple step procedures (Hayes et al.
(2009); VanRaden et al. (2009)). A typical evaluation requires 1) traditional evaluation with
an animal model, 2) extraction of pseudo-observations such as deregressed evaluations, 3)
estimation of genomic effects for genotyped animals, and possibly 4) combining the genomic
index with traditional parent averages and breeding values (Hayes et al. (2009); VanRaden et
al. (2009)). Genomic effects also can be estimated with a simple model that includes a
genomic relationship matrix derived from genotypes and variances of the SNP marker effects
(Nejati-Javaremi et al. (1997); VanRaden (2007)).

Recently, Misztal et al. (2009) proposed a single-step procedure (SSP) for genetic evaluation
in which the pedigree-based relationship matrix is augmented by contributions from the
genomic relationship matrix. Legarra et al. (2009) derived a joint relationship matrix based
on pedigree and genomic relationships. An inverse of such joint relationship matrix allows
straightforward application of the single-step approach in genetic evaluations (Aguilar et al.
(2010); Christensen and Lund (2010)).

VanRaden (2008) presented methods to create genomic relationship matrices. The kernel of
such methods involves a matrix multiplication operation. Specific subroutines for such
operations are already available (Basic Linear Algebra Subroutines BLAS; Dongarra et al.
(1988). An optimized version of BLAS subroutines (Automatically Tuned Linear Algebra
Software, ATLAS; Whaley & Dongarra (1998)) allows taking into account features of a
specific processor (memory speed and cache size) in several such subroutines.

Modifications of current software for genetic evaluations and variance component estimation
to implement SSP (Aguilar et al. 2010) require inverses of the genomic relationship matrix
and the relationship matrix for genotyped animals. The objectives of this research were to
present efficient computing options to create such relationships matrices based on genomic
markers and pedigree information, as well as their inverses.

Material and methods
Data. Creation of the genomic relationship matrix (G) was based on simulations. A matrix of
incidences of SNP maker information (Z) was simulated for a panel of 40K SNPs, with
values corresponding to gene content of the second allele (0, 1 and 2). Number of genotyped
animals varied from 1,000 to 30,000. Pedigree-based relationship matrix (A22) was

* Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
† Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay
‡ INRA, UR631 SAGA, BP 52627, 31326 Castanet-Tolosan, France

constructed using a pedigree data of 9,100,106 US Holstein provided by Holstein USA Inc.
(Brattleboro, VT).

Methods. Let the inverse of the joint relationship matrix based on both pedigree and
genomic information (Aguilar et al. (2010); Christensen and Lund (2010)):

 1 1
1 1

22

− −
− −

⎡ ⎤
⎢ ⎥= + ⎢ ⎥−⎢ ⎥⎣ ⎦

0 0
H A

0 G A

where A-1 is the inverse of the numerator relationship matrix, G-1 is the inverse of the
genomic relationship matrix and is the inverse of the relationship matrix based on
pedigree information corresponding to the genotyped animals.

Following VanRaden (2008), genomic relationships (G) were created as: G = ZZ’/k; where k
is a scaling parameter and Z is an incidence matrix for SNP effects with elements equal to
the number of copies of second allele and centered by the allele frequency. Computations of
ZZ’/k were computed in Fortran 95 by several methods: 1) a simple three “do” loops, with
centering the matrix Z through indirect memory access and scaling within loops (ORIG); 2)
modification to optimize the indirect memory access (OPTM); and 3) OPTM plus
reorganization of loops, and exclusion of the scaling operation from the main loop
(OPTML). Having separate operations for matrix multiplication and scaling allows using
general subroutines to compute ZZ’. Also, matrix multiplications of the form ZZ’ were
computed by OPTML, by the original BLAS subroutine DGEMM, and by their optimized
versions as in ATLAS or in Intel’s Math Kernel Library (MKL).

Matrix inversion was by a converted Fortran 95 code of a generalized inverse algorithm from
the BLUPF90 package (Misztal et al. 2002) and by the LU factorization as implemented in
LAPACK (Anderson et al. 1990). Such subroutines are available either in ATLAS or in
MKL libraries.

Creation of the based-pedigree relationship matrix for genotyped animals (A22) was
evaluated using two methods. The first method was using the tabular method and the second
was following formulas as presented in Misztal et al. (2009), which use the algorithm of
Colleau (2002).

Computations. All programs were run on an Opteron 64-bit processor with a clock speed of
3.02 GHz and a cache size of 1Mbyte. Some programs were also run on a Xeon 64-bit
processor with a clock speed of 3.5 GHz and a cache size of 6Mbytes.

Results and discussion
Results using the alternative loop codes are presented in Table 1. Computing time using
ORIG was 10 times slower on the Opteron system, most likely because of its lower cache
memory. Large improvement was achieved with the OPTM on the Opteron but not the
Xenon system. An alternative explanation is that the Intel compiler that was used in the study
was efficient in optimizing codes on Xenon but not on Opteron systems. Almost 4 times
speedup was obtained on both computers with OPTML.

Figure 2 shows the computing time for OPTML, the BLAS subroutine for matrix
multiplication (DGEMM), and its optimized version as in ATLAS libraries. The lowest
computing time was with ATLAS-DGEMM subroutines. The performance of the OPTML
shows a trend similar to ATLAS-DGEMM, but slightly slower.

Table 1: Computing time (m) for alternative codes for creation of the G matrix1 on
different machines.

0 5000 10000 15000 20000 25000 30000

1
2

3
4

5

Number of animals

lo
g1

0
C

P
U

 ti
m

e
(s

)

DGEMM
Optimized DGEMM
Optimized Loop

 Algorithms

Processor Cache Original Memory
optimized

Memory & loop
optimized

Xeon 3.5 GHz 6 Mbyte 24 26 7
Opteron 3.02 GHz 1 Mbyte 265 59 17

1 using 6,500 animals and 40K SNP markers

0 5000 10000 15000 20000 25000 30000

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Number of animal

S
pe

ed
up

2 CPU

3 CPU

4 CPU

s

Figure 2. Computing time using different
matrix multiplications algorithms

Figure 3. Speedup for optimized
DGEMM for multiple processors
using OpenMP

Matrix multiplication with large matrices requires optimization to fully utilize the cache
memory. This operation requires fine tuning for specific system architectures. Simple
modifications (OPTM) were successful in reducing the run time. Also, a simple
rearrangement of the codes allow the compiler to do an automatic optimization
(vectorization) and speed-up computations from 4 to 15 times, depending on the processor.
However, using automatic code generation as in ATLAS-DGEMM results in a code that runs
faster with no additional programming.

Optimized implementation of DGEMM in MKL allows parallel processing. Figure 3 shows
the results for the optimized implementation of DGEMM in the MKL using up to 4
processors. The speedup with 3 processors and 5000 genotypes was 2.93, which was close to
an ideal one.

Inversion of matrices for different number of genotypes was always faster using LAPACK
compared with the generalized inverse. For the largest genomic relationship matrix (30,000
animals) the inversion took approximately 13 h with the generalized inverse but only 3.4 h
using the optimized version of LAPACK. Further reductions in computing time could be

obtained by parallel processing using OpenMP directives. A speed up of 3.35 was attained
using four processors and the largest matrix.

Creation of the relationship matrix based on pedigree information for 6500 genotyped
animals using the tabular method requires 311 s and 12.1 Gbyte of memory. The same
computations with the Colleau method (2002) require 45 s and 322 Mbyte. The tabular
method uses more memory as it requires storage for a dense matrix for all genotyped animals
and their ancestors (approximately 57,000 individuals for 6,500 genotyped animals) while
the Colleau method needs only a few vectors with dimension equal to the number of
genotyped animals. Memory requirements for the tabular method can be reduced by splitting
the pedigree file in several groups, but at cost of additional computations (VanRaden,
personal communication, 2009).

Conclusion
We presented methods for efficient creation of matrices required for an efficient
implementation of the single-step evaluation. Optimizations were by modifications of the
existing code, using the efficient automatic optimization provided as open source software,
or by commercial libraries. With all the optimizations, the creation of the genomic
relationship matrix for 30,000 animals with 40K SNPs each, takes about 1 hr, with a similar
time to obtain its inverse.

Acknowledgments
This study was partially funded by the Holstein Association USA Inc. and by AFRI grants
2009-65205-05665 and 2010-65205-20366 from the USDA NIFA Animal Genome Program.
The authors thank P.M. VanRaden from Animal Improvement Programs Laboratory, USDA
(Beltsville, MD), for providing the original software.

References
Aguilar, I., Misztal I., Johnson D. L. et al. (2010). J. Dairy Sci. 93: 743–752.
Anderson, E., Bai, Z., Dongarra, J. et al (1990) In Proc ACM/IEEE Conference.2-11
Christensen, O. F., Lund, M. S. (2010). Genet. Sel. Evol., 42–2
Colleau, J. J. (2002) Genet. Sel. Evol. 34:409–421
Dongarra, J., Croz, J., Hammarling, S. et al. (1988). ACM Trans. Math. Softw. 14, 1–17.
Hayes, B. J., P. J. Bowman, A. J. Chamberlain et al. (2009). J. Dairy Sci. 92:433–443.
Nejati-Javaremi, A., C. Smith, J. P. Gibson (1997). J. Anim. Sci. 75, 1738–1745.
Legarra, A., Aguilar, I., Misztal, I. (2009). J. Dairy .Sci., 92:4656–4663.
Misztal, I., S. Tsuruta, T. Strabel, et al. (2002). In Proc7th WCGALP. 28–07
Misztal, I., A. Legarra, I. Aguilar. (2009). J. Dairy Sci. 92: 4648–4655.
VanRaden, P. M. (2007). Interbull Bull. 37, 33–36.
VanRaden, P. (2008). J. Dairy Sci., 91:4414-4423.
VanRaden, P. M., Van Tassell, C. P., Wiggans, G. W. et al. (2009). J. Dairy Sci. 92:16–24.

Whaley, R. C., Dongarra, J. (1998). In Proc ACM/IEEE Conference (CD-ROM)

	Conclusion
	Acknowledgments

