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INTRODUCTION 
 
The concept of genomic selection (Meuwissen et al., 2001) generated great excitement in the 
animal breeding community. With genomic information from SNP panels, one can achieve 
accuracy from young animals almost as high as from a progeny selection program 
(VanRaden et al., 2009). While costs of genotyping are still high, they are likely to drop 
dramatically over time. In such a case, the question of whether to use the genomic 
information will be replaced by how to use it efficiently. 
 
At this time the use of genomic selection is complicated. A typical scenario would involve a 
multistep approach that includes 1) running a regular evaluation, 2) extracting pseudo-
observations for genotyped individuals, e.g., daughter deviations or de-regressed EBV, 3) 
estimating SNP effects using pseudo-observations as records, and 4) possibly combining the 
genomic predictions with parent average (VanRaden, 2008).  For smaller populations, one 
can run step 3 with phenotypic records; however, the information on relatives is not utilized. 
Step 3 usually involves estimating weights for SNP effects, mostly via BayesX procedures 
(Hayes et al., 2009). A procedure in which all weights are assumed equal leads to a genomic 
relationship matrix and is called GBLUP.  
 
Current experiences with SNP panels of around 50-60k indicate that GBLUP is almost or as 
accurate as BayesX (VanRaden et al., 2009; Hayes et al., 2009). This indicates that the 
genomic selection works more by capturing relationships than by estimating effects of major 
genes. Although larger SNP panels of over 500k may capture a larger fraction of major 
genes, the total variance explained by those genes is likely to be small (Goldstein at al., 
2009; Maher et al, 2008). Thus the primary mode of the genomic information in genetic 
evaluation is improved relationships among animals that also includes the information about 
the Mendelian sampling (Goddard, 2009). 
 
The multi-step methodology is complicated and thus prone to errors. Also, step 3 assumes 
simplistic single-trait models. Misztal et al. (2009) proposed a single-step methodology 
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where step 1 is modified to use a relationships matrix that combines pedigree and genomic 
relationships, and steps 2-4 are eliminated. Legarra et al. (2009) and Christensen and Lund 
(2010) developed such a matrix, and Aguilar et al. (2010a) showed that a single step 
methodology is simple, fast and accurate. The purpose of this paper is to present the single 
step methodology with focus on efficient implementation and modification of existing 
software.  

 
MATERIALS AND METHODS 
 
Matrix H and unsymmetric equations.  Assume regular mixed model equations as used in 
a traditional genetic evaluation, for simplicity with only a single random effect: 
 

y=Xb+Zu+e 
 

where y is a vector of records, b is a vector of fixed effects, and u is a vector of animal 
effects. Under a polygenic infinitesimal model of inheritance, var(u)=A���, where A is the 
numerator relationship matrix based on pedigree. Furthermore, var(e)=I���, and X and Z are 
appropriate incidence matrices. Misztal et al. (2009) postulated that the numerator 
relationship can be modified to account for genomic information: 
 

H= A+A∆ 

 

where A∆ is a matrix that can be stored explicitly, and H is the new modified matrix. The 
regular mixed model equations (MME) are: 
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Using the usual notations, LHS, and RHS are the left- and right-hand side, and w=���� �����. 
 
Assume that H is too large to be inverted. Henderson (1984) described an unsymmetric set 
of mixed model equations where only H, not necessarily of full rank, is required: 
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For large pedigrees such a system cannot be created explicitly. Assume that the system of 
equations is solved using an algorithm that does not require the elements of LHS explicitly 
but only its product by a vector, say LHS q, as in the Preconditioned Conjugate Gradient 
(PCG) iteration on data (Tsuruta et al., 2001). With the regular equations: 
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With the unsymmetric equations:  
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An existing program for genetic evaluation implements LHS q, and that program can be 
converted to use the unsymmetric equations if one can compute A∆c2 and Ac2 at a low cost. 
A product of A by a vector can be calculated efficiently by an algorithm given by Colleau 
(2002), as presented below. Additional modifications to an existing program should include 
a solving algorithm that works with unsymmetric matrices and a preconditioner (Misztal et 
al., 2009). 
 
The Colleau Algorithm. The recurrence equation for the additive effect is: 
 

a=Pa+φ 
 

where a is a vector of animals ordered from oldest to youngest, φ is a diagonal matrix of 
Mendelian samplings, and P is a matrix relating animals to their parents; this matrix has at 
most two elements per row, both equal to 0.5. Then: 
 

Var(a)=A=(I -P)-1D(I -P)-1’ 
 

where D=var(φ).  Colleau (2002) showed that the product of A by a vector t can be 
computed in a linear time:  
 

v=At  = (I -P)-1D(I -P) -1’ t = (I -P)-1D [(I -P) -1’ t] 
 

In particular, quantities r=(I -P)-1’q and v=(I -P)-1Dr  can be obtained by solving (I -P)’ r=q 
and (I -P)v=Dr , each one in a single sweep because (I -P) is triangular. The scalar formulas 
are:  
 

ri = ri+ qi;    rsi = rsi+ri/2;    rdi = rdi+ri/2;    i=n,..,1 
vi =  di ri + (vsi +vdi )/2, i=1,..,n 
 

where si and di are positions of the sire and dam of animal i, respectively.  
 
The Colleau (2002) algorithm can be used to compute products of sections of matrices. For 
instance, the products below show how to compute A11q, A22q, A21q, or A22q.  
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Matrix that combines pedigree and genomic relationships.  Legarra et al (2009) 
developed matrix H that combines pedigree and genomic relationships. Denote:   
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where subscripts 1 and 2 denoted ungenotyped and genotyped animals, respectively.  
The distribution of breeding values of ungenotyped animals, conditioned on breeding values 
of genotyped animals, is: 
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.  
Let  
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where G is a genomic relationship matrix as in VanRaden (2008). Then: 
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After rearranging, 
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For large populations the matrix A∆ is large. Assume that matrices G and A22 (matrix of 
additive relationships among genotyped animals) can be stored in memory explicitly. 
Denote: 
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The product of A∆ by a vector t can be calculated efficiently without creating large matrices 
or multiplying them explicitly:  
   



1 2 3 4 5 = ( ( ( ( ( )))))∆ A t P P P P P t
  

  
 

where products of A12 or A21 by a vector are obtained by the Colleau (2002) algorithm. 
 
Inverse of H and symmetric equations. Aguilar et al. and Christensen and Lund (2010)) 
found that the inverse of matrix H as above has a simple form: 
 

 
 
 22

-1 -1
-1 -1

0 0
H = A +

0 G -Α
. 

 
The new formula allows for drastically simpler computations with symmetric mixed model 
equations. In particular, replacing A-1 with H-1 in existing software for genetic evaluation or 
for estimation of variance components make those programs applicable for genomic studies. 
All models that are supported by a given program using A -1 are also supported by the same 
program when using H-1. This includes multi-trait, random regression, threshold, etc. 

Efficient computation of H-1 requires efficient computation of G-1 and A22
-1, where the last 

matrix is an inverse of a pedigree-based relationship matrix for genotyped animals only.  

Matrix A22 can be calculated using many methods, e.g., tabular, recursive or by the Colleau 
algorithm. The last option proved the fastest. Let qj be a vector with 1.0 in the position 
corresponding to the i-th row of A22 and 0 elsewhere. Then A qj computes the i-th column of 
A22. For efficiency, many columns can be computed at the same time. 

Matrix G is calculated by matrix multiplication (VanRaden et al., 2009b). Let pj be allele 
frequency for genotype “2” in marker j, and let mij  be genotypes for i-th animal and j-th 

marker such that 
0 2  - homozygous 11           

1 2   - heterozygous 12 - 21   

2 2  - homozygous 22           

j

ij j

j

p

m p

p

 −
= −
 −

 

so that average mi. is 0. Then G =MM ’/k, where the scale parameter k is usually computed 
as:   

 
2 (1 )j jk p p= −∑ . 

Gene frequencies affect the mean and scale of G. When equal gene frequencies are assumed, 
averages of the diagonal or off-diagonal elements may be much larger than in A22.  Scaling 
G by regression on A as in VanRaden (2008) may result in G not being positive definite. 
With current allele frequencies, the average off-diagonal elements are close to 0. Matrix G 
can be made compatible with A22 when current allele frequencies are used and when G is 
scaled for an average diagonal element of 1.0. (Forni et al., WCGALP2010). Expected 



genetic variation in a population is proportional to trace(A22)  – equal to 1 if no inbreeding - 
or trace(G) (Gianola et al., 2009); scaling equalizes this variation. .  

When genotyped animals include clones, G as constructed above is singular and cannot be 
easily inverted. Therefore, a common strategy is to replace G with αG + (1-α) A22, where α 
is close to 1.0, e.g., 0.95. From our experience, this parameter is not critical.  

Computing efficiency.  Both G and A22 are dense matrices. Computing G and then 
inverting it may be time consuming when the number of genotyped animals and markers are 
high. Assuming n total animals, s genotyped animals and t SNP makers, the number of 
arithmetic operations is proportional to ts for A22, s

2t for G, and t3 for an inverse. Operations 
with cubic cost become prohibitively expensive for larger matrices.  

Aguilar et al (2010b) looked at computing costs using alternate codes, libraries, computers 
and parallel processing. For SNP data of 40k markers and 6 thousand animals, an initial code 
to create G in Fortran took from 0.5 h to 4 h, depending on the processor. Simple 
rearrangement of the code allowed the compiler to do an automatic optimization (including 
vectorization) and increased the speed 4 to 15 times, depending on the processor. Use of 
specialized subroutines for matrix multiplication that took into account specificity of a 
processor (memory speed and cache size) allowed for an improvement of about 4 times. 
Finally, using parallel processing in a processor with 4 cores almost quadrupled the speed. 
Ultimately, creation of G, inversion of G, and inversion of A22 each took less than one 
minute of computing.  Based on simulated data, an extension of simulated data to up to 
30,000 animals would increase these times to about one hour.   Barring numerical problems, 
the maximum size of such matrices treated as dense that can be computed in a day is about 
100,000.  

Experiences with the single step approach 

Initially, the unsymmetric equations were implemented in a modified BLUP90IOD program 
from the BLUPF90 family of programs (Misztal et al., 2002; Tsuruta et al., 2001). Compared 
to the original BLUP90IOD, one round of iteration was about four times more expensive: 
two times because of an unsymmetric solver and two times due to additional computations 
(multiplication of H by a vector). The convergence was as good as with the original program 
for smaller data sets (< 100 k animals), it deteriorated  as the data size was increased to about 
2 million animals, above which the iteration diverged. The convergence rate was strongly 
dependent on type of G, indicating that G needs to be constructed in a scale compatible with 
A.  

BLUP90IOD was also modified for the symmetric equations (Aguilar, 2010a). The 
convergence and running time of the national evaluation for the final score in Holsteins were 
similar to the original program. This was regardless of type of G used. When the model was 
expanded to 5 type traits, Tsuruta et al. (2010) found the convergence reduced 2 times and 
the computing time per round increased about 3 times. Changes in the convergence rate with 
multiple-trait models and dairy data seem to be sensitive to the choice of G and also to 
modifications in formulas for H; replacement of the formula (G-1 - A22

-1) by (G-1 – 0.7 A22
-1) 



increased the accuracy and the convergence rate while decreasing the inflation of genomic 
EBV.  

The symmetric equations were implemented in most programs of the BLUP90 family 
(Misztal et al., 2002) via a custom relationship matrix. Initially, the computing was 
extremely slow. In these programs, sparse matrices are first stored in “hash” format, and that 
implementation was inefficient with large dense blocks. Refinement of a “hash function” 
restored performance. Subsequent analyses involved data sets with up to 300,000 animals, up 
to 3,500 genotypes and up to 3 traits (Chen et al, 2010). Initially, estimates of variance 
components were different than those without the genomic information. After scaling G for 
an average diagonal of 1.0 and an average off-diagonal of 0.0, these estimates were similar 
(Forni et al., 2010).   

The programs that store the mixed model equations in memory (BLUPF90, REMLF90, 
AIREMLF90) become slow in multiple trait models, especially with many genotypes as 
dense blocks of H-1 being replicated many times. In such a case, optimized Gibbs samplers 
(e.g., GIBBSxF90), where multiple trait equations are assembled from single-trait equations 
every round, become less expensive alternatives. Most of the elements of (G-1 - A22

-1) are 
very small. It may be possible that large factions of those elements can be set to zero and the 
resulting matrix can be stored as a sparse matrix.  

Additional issues 

Large chips. When large SNP chips are available, e.g., > 500k markers, computing G would 
be more expensive, however the increase is in linear time. Studies indicate that increases of 
accuracies past 2-20k markers are minimal (VanRaden et al., 2009; Weigel et al., 2009). One 
solution with large chips is preselecting SNP markers by other methods and then either using 
the reduced number if this results in a better accuracy or using an evenly spaced subset 
otherwise. In multiple traits, the reduced subset may be different for each trait. If there is a 
large number of major genes detected, which may occur for specific traits, those genes can 
be modeled separately as fixed effects.  

Many genotypes. As more animals are genotyped, the number of animals may become too 
large to create H or H-1. Two strategies may be applicable. In the first one, only genotypes 
relevant to the current selection would be retained. Such genotypes would be mainly those of 
high reliability animals or recent lower-reliability animals with some records. In the second 
strategy, sparse versions H or H-1 could be used. Particularly in G-1, most elements are very 
small. It may be possible to eliminate most of those elements and store G-1 as sparse. It 
would be desirable to develop algorithms to create sparse approximations of G-1 without 
creating G in dense form. Another alternative is using the unsymmetric equations, where the 
inverse of G is not required, and either use only selected elements of G or calculate a 
product of G by a vector such as t as M (M’t )/k at a cost of 3nt without creating G explicitly.  
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