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INTRODUCTION

The concept of genomic selection (Meuwissen e28D1) generated great excitement in the
animal breeding community. With genomic informatifoom SNP panels, one can achieve
accuracy from young animals almost as high as finprogeny selection program
(VanRaden et al., 2009). While costs of genotypng still high, they are likely to drop
dramatically over time. In such a case, the questib whether to use the genomic
information will be replaced by how to use it &ffictly.

At this time the use of genomic selection is congikd. A typical scenario would involve a
multistep approach that includes 1) running a r@gevaluation, 2) extracting pseudo-
observations for genotyped individuals, e.g., déerghbeviations or de-regressed EBV, 3)
estimating SNP effects using pseudo-observatiomsa@sds, and 4) possibly combining the
genomic predictions with parent average (VanRa@608). For smaller populations, one
can run step 3 with phenotypic records; however jitiformation on relatives is not utilized.
Step 3 usually involves estimating weights for S&ffects, mostly via BayesX procedures
(Hayes et al., 2009). A procedure in which all wsgare assumed equal leads to a genomic
relationship matrix and is called GBLUP.

Current experiences with SNP panels of around 30Ou@dicate that GBLUP is almost or as
accurate as BayesX (VanRaden et al., 2009; Hayed.,e2009). This indicates that the
genomic selection works more by capturing relatigos than by estimating effects of major
genes. Although larger SNP panels of over 500k o@pture a larger fraction of major
genes, the total variance explained by those genékely to be small (Goldstein at al.,
2009; Maher et al, 2008). Thus the primary modéehef genomic information in genetic
evaluation is improved relationships among anirtfzés also includes the information about
the Mendelian sampling (Goddard, 2009).

The multi-step methodology is complicated and thuane to errors. Also, step 3 assumes
simplistic single-trait models. Misztal et al. (B)Oproposed a single-step methodology
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where step 1 is modified to use a relationshipgim#tat combines pedigree and genomic
relationships, and steps 2-4 are eliminated. Lagatrral. (2009) and Christensen and Lund
(2010) developed such a matrix, and Aguilar et(a010a) showed that a single step
methodology is simple, fast and accurate. The mepd this paper is to present the single
step methodology with focus on efficient impleméiora and modification of existing
software.

MATERIALS AND METHODS

Matrix H and unsymmetric equations. Assume regular mixed model equations as used in
a traditional genetic evaluation, for simplicitytivionly a single random effect:

y=Xb+Zu+e

wherey is a vector of recorddy is a vector of fixed effects, andis a vector of animal
effects. Under a polygenic infinitesimal model ohéritance, vat()=Aoc?2, whereA is the
numerator relationship matrix based on pedigreehEtmore, vag)=l g2, andX andZ are
appropriate incidence matrices. Misztal et al. @O0(@ostulated that the numerator
relationship can be modified to account for genaimfiermation:

H= A+A,

whereA, is a matrix that can be stored explicitly, ddds the new modified matrix. The
regular mixed model equations (MME) are:

X'X X'z
ZX ZZ+aH?

|- (23] or s w=rrs

Using the usual notationsHS, andRHS are the left- and right-hand side, ami[ﬁ’ a'l.

Assume thaH is too large to be inverted. Henderson (1984) riteest an unsymmetric set
of mixed model equations where oly not necessarily of full rank, is required:

[H ZX H ZZ+aI [ﬁ]

7 ] or LHSy w=RHSy,

For large pedigrees such a system cannot be creamditly. Assume that the system of
equations is solved using an algorithm that doé¢seguire the elements &HS explicitly

but only its product by a vector, s&HS q, as in the Preconditioned Conjugate Gradient
(PCQG) iteration on data (Tsuruta et al., 2001). With tegular equations:

X'Xq,+X'Zq,

LHS =1, , =
1= |z Xq,+Z'Zq, + aH_lqz] [c2+c3+c4]

where



_ [11]. _7 o - oH 1. _ [
q= [qz], c,=72Xq,+ZZq,; c3;=aH "q,;, RHS = [7‘2]'
With the unsymmetric equations:

X'Xq,+XZq,

~lcrvc+ aad =lac e+ aql
HZ'Xq,+HZ'Zq, + aqz] B [H(Cz+c3) + aqz] " lAc+ Ayc +aq,

LHSMq=[

and
RHS), = [1;'11'2] = [Ar2 -T-lAArz]‘

An existing program for genetic evaluation implemsenHS g, and that program can be
converted to use the unsymmetric equations if @mecomputeéd,c, andAc, at a low cost.
A product ofA by a vector can be calculated efficiently by agodthm given by Colleau
(2002), as presented below. Additional modificagiém an existing program should include
a solving algorithm that works with unsymmetric s and a preconditioner (Misztal et
al., 2009).

The Colleau Algorithm. The recurrence equation for the additive effect is:

a=Pat¢
wherea is a vector of animals ordered from oldest to ymsh, ¢ is a diagonal matrix of
Mendelian samplings, anf@d is a matrix relating animals to their parentss timatrix has at
most two elements per row, both equal to 0.5. Then:

Var(@)=A=(1-P)*D(I-P)™

where D=var(p). Colleau (2002) showed that the productAfofby a vectort can be
computed in a linear time:

v=At = (I-P)'D(I-P) 't = (1-P)'D [(I-P) 1]
In particular, quantities=(1-P)™ q and v=(1-P)’Dr can be obtained by solving-P)'r=q
and (-P)v=Dr, each one in a single sweep becaud®) (s triangular. The scalar formulas

are:

N=rh+q; = rth/2, = rgtr/2,  i=n,.,1
Vi= d i+ (i +vgi)/2, i=1,..,n

where sand ¢ are positions of the sire and dam of animal ipeetively.

The Colleau (2002) algorithm can be used to compraducts of sections of matrices. For
instance, the products below show how to compyi, A..q, Aziq, or AxAg.



Ay A12] [‘I]= Ai1q Ay A12”0 ]= Aiq
Ayr Ay Azq I Az Ay Az2q

Matrix that combines pedigree and genomic relatiorlsips. Legarra et al (2009)
developed matrix that combines pedigree and genomic relationsBipaote:

A= A11 A12 Al— AY A"
- A A - AL A2
21 22
where subscripts 1 and 2 denoted ungenotyped aradyged animals, respectively.

The distribution of breeding values of ungenotypaiimnals, conditioned on breeding values
of genotyped animals, is:

p(ul|u2) =N (Ale_zjaJ 2A - A AGA 2).
Let
Var (u,)=G

where G is a genomic relationship matrix as in Vaahéh (2008). Then:

H:{Hll HlZ}z{An"'AlZA‘_zlz(G —-A zz)A j% 21A % -(12:’2}

H21 H 22 GA;L 21 G

After rearranging,

i e 2

For large populations the matrix, is large. Assume that matric& and A,, (matrix of
additive relationships among genotyped animals) banstored in memory explicitly.
Denote:

[ [t e

The product ofA, by a vectott can be calculated efficiently without creatinggmatrices
or multiplying them explicitly:



AAt = Pl (PZ (P3 (P4 ( P5 t)))))

where products o, or A,; by a vector are obtained by the Colleau (2002)rétgm.

Inverse of H and symmetric equationsAguilar et al. and Christensen and Lund (2010))
found that the inverse of matrik as above has a simple form:

qiaa, 0 O
0 G'l-A;

The new formula allows for drastically simpler cartgtions with symmetric mixed model
equations. In particular, replacidg® with H™ in existing software for genetic evaluation or
for estimation of variance components make thosgrams applicable for genomic studies.
All models that are supported by a given programgus™ are also supported by the same
program when usingl ™. This includes multi-trait, random regressiongtrold, etc.

Efficient computation oH™? requires efficient computation &' andA,,?, where the last
matrix is an inverse of a pedigree-based relatipnstatrix for genotyped animals only.

Matrix Ay, can be calculated using many methods, e.g., talngleursive or by the Colleau
algorithm. The last option proved the fastest. ¢egbe a vector with 1.0 in the position
corresponding to the i-th row #f;and 0 elsewhere. Theéhg; computes the i-th column of
Ao. For efficiency, many columns can be computedhatsame time.

Matrix G is calculated by matrix multiplication (VanRadenag, 2009b). Let pbe allele
frequency for genotype “2” in marker j, and lej fme genotypes for i-th animal and j-th

0-2p,; - homozygous 11
marker such thaﬁ\j =41-2p, - heterozygous 12 - 21
2-2p; - homozygous 22

so that average jms 0. ThenG =MM '/k, where the scale parameters usually computed
as:

kzzzpj(l_pj).

Gene frequencies affect the mean and scal &¥hen equal gene frequencies are assumed,
averages of the diagonal or off-diagonal elemerdyg be much larger than iy,. Scaling

G by regression on A as in VanRaden (2008) may résub not being positive definite.
With current allele frequencies, the average dodfjdnal elements are close to 0. Matéix
can be made compatible witk,, when current allele frequencies are used and V@&
scaled for an average diagonal element of 1.0.n{Fetr al., WCGALP2010). Expected



genetic variation in a population is proportionakriacef\,;) — equal to 1 if no inbreeding -
or trace@) (Gianola et al., 2009); scaling equalizes thisagen. .

When genotyped animals include clon@sas constructed above is singular and cannot be
easily inverted. Therefore, a common strategy ieefdaceG with oG + (1-w) Ay, Whereo
is close to 1.0, e.g., 0.95. From our experierfus,darameter is not critical.

Computing efficiency. Both G and A,, are dense matrices. Computi@ and then
inverting it may be time consuming when the nundfegenotyped animals and markers are
high. Assuming n total animals, s genotyped aninaald t SNP makers, the number of
arithmetic operations is proportional to ts fop, &t for G, and £ for an inverse. Operations
with cubic cost become prohibitively expensiveliger matrices.

Aguilar et al (2010b) looked at computing costangsilternate codes, libraries, computers
and parallel processing. For SNP data of 40k mar&ed 6 thousand animals, an initial code
to createG in Fortran took from 0.5 h to 4 h, depending oe tbrocessor. Simple
rearrangement of the code allowed the compilerot@am automatic optimization (including
vectorization) and increased the speed 4 to 15stimiepending on the processor. Use of
specialized subroutines for matrix multiplicatiomat took into account specificity of a
processor (memory speed and cache size) allowednfdmprovement of about 4 times.
Finally, using parallel processing in a processith W cores almost quadrupled the speed.
Ultimately, creation ofG, inversion ofG, and inversion ofA,, each took less than one
minute of computing. Based on simulated data, xdansion of simulated data to up to
30,000 animals would increase these times to aboaithour. Barring numerical problems,
the maximum size of such matrices treated as dimasecan be computed in a day is about
100,000.

Experiences with the single step approach

Initially, the unsymmetric equations were implensehin a modified BLUP90IOD program
from the BLUPF90 family of programs (Misztal et, &002; Tsuruta et al., 2001). Compared
to the original BLUP90IOD, one round of iteratiorasvabout four times more expensive:
two times because of an unsymmetric solver andtimes due to additional computations
(multiplication ofH by a vector). The convergence was as good as dgtlriginal program

for smaller data sets (< 100 k animals), it detaterl as the data size was increased to about
2 million animals, above which the iteration divedg The convergence rate was strongly
dependent on type @&, indicating thatG needs to be constructed in a scale compatible with
A.

BLUP90OIOD was also modified for the symmetric edmuag (Aguilar, 2010a). The
convergence and running time of the national eviindor the final score in Holsteins were
similar to the original program. This was regardle§type ofG used. When the model was
expanded to 5 type traits, Tsuruta et al. (2010hdothe convergence reduced 2 times and
the computing time per round increased about 3gti@hanges in the convergence rate with
multiple-trait models and dairy data seem to besisigr to the choice o6 and also to
modifications in formulas foH; replacement of the formul&(* - A %) by (G™* - 0.7A5 Y



increased the accuracy and the convergence rate dédgreasing the inflation of genomic
EBV.

The symmetric equations were implemented in mosgnams of the BLUP90 family
(Misztal et al., 2002) via a custom relationshiptna Initially, the computing was
extremely slow. In these programs, sparse mataced$rst stored in “hash” format, and that
implementation was inefficient with large denseckl Refinement of a “hash function”
restored performance. Subsequent analyses invdatedsets with up to 300,000 animals, up
to 3,500 genotypes and up to 3 traits (Chen eR@L0). Initially, estimates of variance
components were different than those without th@ogec information. After scaling G for
an average diagonal of 1.0 and an average off-daguf 0.0, these estimates were similar
(Forni et al., 2010).

The programs that store the mixed model equationmmémory (BLUPF90, REMLF90,
AIREMLF90) become slow in multiple trait models,pesially with many genotypes as
dense blocks ofi* being replicated many times. In such a case, apeiinGibbs samplers
(e.g., GIBBSxF90), where multiple trait equatioms assembled from single-trait equations
every round, become less expensive alternativest Mbthe elements of3* - A,Y) are
very small. It may be possible that large factiohthose elements can be set to zero and the
resulting matrix can be stored as a sparse matrix.

Additional issues

Large chips. When large SNP chips are available, e.g., > 30&ters, computinG would

be more expensive, however the increase is inrlitie®. Studies indicate that increases of
accuracies past 2-20k markers are minimal (VanRatlah, 2009; Weigel et al., 2009). One

solution with large chips is preselecting SNP meshey other methods and then either using
the reduced number if this results in a better mayuor using an evenly spaced subset
otherwise. In multiple traits, the reduced subsay e different for each trait. If there is a

large number of major genes detected, which mayrdoe specific traits, those genes can

be modeled separately as fixed effects.

Many genotypes As more animals are genotyped, the number of @simay become too
large to creatéd or H™. Two strategies may be applicable. In the first,amly genotypes
relevant to the current selection would be retaiBah genotypes would be mainly those of
high reliability animals or recent lower-reliabjlibnimals with some records. In the second
strategy, sparse versioRisor H™ could be used. Particularly &, most elements are very
small. It may be possible to eliminate most of thetements and sto®™ as sparse. It
would be desirable to develop algorithms to cresgarse approximations @™ without
creatingG in dense form. Another alternative is using theymmetric equations, where the
inverse ofG is not required, and either use only selected efésnofG or calculate a
product ofG by a vector such as t B§(M't )/k at a cost of 3nt without creatir@@ explicitly.
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