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Introduction 

Traditional genetic evaluations combine only phenotypic data and probabilities that genes are 

identical by descent using pedigree information. Genomic information can be added to 

evaluations and the observed proportion of chromosome segments shared by individuals can 

replace probabilities. This may increase the rate of genetic improvement each generation by  

raising the accuracy of estimated breeding values (EBVs) and reducing the generation 

interval (VanRaden (2008)). The integration of genotype information into the numerator 

relationship matrix (A) using a genomic relationship matrix (G) is an alternative to exploit 

the advantages of genomics when the entire population cannot be genotyped (Legarra et al. 

(2009); Christensen and Lund (2010)). Differences in the scale of pedigree-based and 

genomic relationship coefficients were reported (Aguilar et al. (2010)). How these 

differences can affect parameter estimates is still uncertain. The objectives of this research 

were to contrast pedigree and genotype-based relationship coefficients in a swine population, 

and compare the outcomes of a genetic evaluation when the standard relationships were 

modified by genomic coefficients.  

Material and methods 

Phenotypic records and model. Records of litter sizes from 338,346 sows, of which 1,919 

were genotyped using the porcine 60k SNP chip, were evaluated. Genotypes of 70 sires were 

also available. The data set is privately-owned by PIC/Genus Plc. Analyses were carried out 

with the complete data set and with a subset of genotyped animals and their parents 

(n=5,090). A single-trait animal model was used to estimate variance components and 

breeding values. The fixed effects of parity order, age at farrowing (linear covariable), 

number of services, mating type (artificial insemination or natural service), contemporary 

group, sow line and sire line (mate) were included in the analysis. Contemporary groups 

were defined by: season, year and farrowing farm. EBVs’ accuracies were estimated using: 

accuracy = 1 – sqrt(PEV/ 2
aσ ), where sqrt= square root, PEV = prediction error variance and 

2
aσ = additive variance. PEV was obtained by inversion of the coefficient matrix of the 

mixed model equations. 

Pedigree-based and genomic relationships. The numerator relationship matrix was built 

with pedigree information on 382,988 animals. A genomic relationship matrix was 
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constructed following (VanRaden (2008)) and used allele frequencies in the base population 

equal to 0.5 (G05), equal to the observed average minor allele frequency (GMF) or observed 

allele frequencies (GRF). In addition, a modification in the denominator proposed by 

Gianola et al. (2009) to scale G to be analogous to A was also applied with realized 

frequencies (GRF*). This algorithm assumes that gene frequencies in the base population are 

not independent. A normalized matrix (GN) was obtained by multiplying GRF by a constant 

to achieve an average diagonal of 1. The genomic matrix was weighted as G = 0.95Gr + 

0.05A (Gr = matrix with raw genomic coefficients) and combined with pedigree-based 

coefficients in the inverse of matrix H as shown in Aguilar et al. (2010). 

Results and discussion 

Statistics of pedigree-based and genomic relationship coefficients are presented in Table 1. 

The values refer to the matrix containing relationships between genotyped animals only (A22 

or G). Using G05 and GMF both diagonal and off-diagonal elements were on average 

greater than the coefficients in A. The average minor allele frequency was equal to 0.264. 

Regardless of the denominator employed to scale G, the mean genomic coefficients obtained 

with realized frequencies were smaller than pedigree-based coefficients. Also, genomic 

coefficients presented greater variance.  

 

Table 1: Statistics of relationship coefficients estimated using pedigree and genomic 

information 

 N Mean Maximum Minimum Variance 

Pedigree-based relationships (A) 

Diagonal  1989 1.000 1.075 1.000 0.00003 

Off-diagonal 3954132 0.032 0.600 0.000 0.00172 

Genomic relationships assuming allele frequency  0.5 (G05) 

 Diagonal 1989 1.253 1.462 1.178 0.00083 

Off-diagonal 3954132 0.595 1.231 0.387 0.00160 

Genomic relationships using the average minor allele frequency (GMF) 

Diagonal 1989 1.697 1.894 1.632 0.00073 

Off-diagonal 3954132 1.022 1.654 0.822 0.00155 

Genomic relationships using realized allele frequencies (GRF) 

Diagonal 1989 0.936 1.228 0.837 0.00176 

Off-diagonal 3954132 0.000 1.000 -0.198 0.00241 

Normalized genomic relationships (GN) 

Diagonal 1989 1.002 1.314 0.895 0.00201 

Off-diagonal 3954132 0.000 1.070 -0.212 0.00275 

Genomic relationships using realized non-independent allele frequencies (GRF*) 

Diagonal 1989 0.505 0.663 0.436 0.00051 

Off-diagonal 3954132 0.000 0.540 -0.105 0.00070 

 

Pedigrees may include many generations but must end eventually. Traditional genetic 

evaluations assume that the founder individuals are the earliest generation recorded and they 

do not share genes from more remote ancestors. Relationship and inbreeding coefficients 

from later generations are estimated as deviances from the founders’ relatedness. Genomic 



analysis may reveal that founding animals actually share genes identical by descent and shift 

the relationship coefficients up and down. Genomic and pedigree-based matrices should be 

compatible in scale to be integrated, but there is no reason for G to have a particular 

interpretation in terms of relationships (Legarra et al. (2009)). Estimates of variance 

components in the full data set (n = 338,346) are shown in Table2 and in the subset (n = 

1,919) in Table 3.  

 

Table 2: Variance components estimates for litter size using pedigree and genomic 

relationship coefficients and all phenotypes available 

 Additive Variance (ste
1
) Residual Variance (ste

1
) 

A 1.26 (±0.03) 6.66 (±0.02) 

G05 1.28 (±0.03) 6.65 (±0.03) 

GMF 1.28 (±0.03) 6.65 (±0.03) 

GRF 1.27 (±0.03) 6.65 (±0.03) 

GN 1.27 (±0.03) 6.65 (±0.03) 

GRF* 1.30 (±0.03) 6.64 (±0.03) 
   1 standard errors; *following Gianola et al. (2009) 

 

Choices of G with average diagonal coefficients different from 1 led to greater estimates of 

additive variance, mainly in the smaller data set. Relative inflation of variance estimates 

would not be a problem if the entire population was genotyped and all relationships were 

genomic-based, but this is not the case for most livestock populations. If analysis requires a 

unique additive variance for genotyped and non-genotyped animals, a possible solution to 

avoid this problem is re-scaling the genomic matrix to obtain average diagonal elements 

equal to 1. This was achieved by multiplying the genomic coefficients by a constant (equal to 

1.07). Legarra et al. (2009) showed that a normalized G obtained using GN = G/trace(G) 

allows the same expectation of variance for breeding values of genotyped and non-genotyped 

animals. Standard errors of additive variance estimates in the subset were smaller when GRF 

and GN were used. This may indicate that more information is added by the genomic 

coefficients in the appropriate scale than standard probabilities.   
 

Table 3: Variance components estimates for litter size using pedigree and genomic 

relationship coefficients and phenotypes of genotyped animals  

 Additive Variance (ste
1
) Residual Variance (ste

1
) 

A 2.27 (±0.52) 5.30 (±0.44) 

G05 3.43 (±0.56) 5.25 (±0.29) 

GMF 3.43 (±0.56) 5.25 (±0.30) 

GRF 2.41 (±0.39) 5.29 (±0.30) 

GN 2.25 (±0.36) 5.30 (±0.30) 

GRF* 4.46 (±0.73) 5.22 (±0.30) 
   1 standard errors; *following Gianola et al. (2009) 

 

Christensen and Lund (2010) also reported that parameter estimation was sensitive to the 

choice of the allele frequencies in a scenario with selection and where the base population 

was not genotyped. Aguilar et al. (2010) observed inflation of breeding values using genomic 

relationship coefficients and proposed to weight the difference between G and A to obtain 

optimal predictions. The primary influence of the weighting factor would be related to the 



proportion of the additive variance explained by the genomic information. It is not clear if 

the optimal dispersion parameters for the standard linear model using A should be the same 

after incorporation of G.  

Estimates of accuracies obtained by inversion with different genomic matrices are presented 

in Table 4. Increase in accuracies for genotyped animals was observed despite the allele 

frequencies and scaling method employed. It is possible that differences in scale of 

relationship coefficients obtained using different sources of information led to biases in 

estimates of breeding values and accuracies, especially in the small data set. However, 

estimates of genomic breeding values were fairly similar. The correlation between EBVs and 

genomic breeding values were 0.79, 0.79, 0.78, 0.78, 0.79 for G05, GMF, GRF, GN and 

GRF*, respectively. In a simulation study, VanRaden (2008) showed that accurate estimates 

of genomic inbreeding coefficients required very precise estimates of allele frequencies in 

the base population while genetic merit was less sensitive. 

 

Table 4: Average breeding values’ accuracies using pedigree and genomic relationship 

coefficients 

Relationship Matrix Full pedigree 

(n=382,988) 

Genotyped females 

(n=1,919) 

Genotyped sires 

(n=70) 

A 0.21 0.22 0.62 

G05 0.21 0.37 0.63 

GMF 0.21 0.49 0.64 

GRF  0.21 0.30 0.63 

GN 0.21 0.28 0.63 

GRF* 0.21 0.43 0.66 

Conclusion 
Genetic similarity can be defined in several ways using pedigree, genotype information or a 

combination of both. Genetic evaluations can benefit from the mixture of genomic and 

pedigree information, but such integration poses a challenge. When the genomic relationship 

coefficients are of a different scale than pedigree-based coefficients, parameter estimates 

may be biased, especially if data sets are small. A possible solution to remove the bias is to 

normalize the genomic relationship matrix. 
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