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Introduction 
Genomic selection methods are centered on what assumptions are considered valid, the most 
critical being the assumed distribution of gene effect (Meuwissen et al., 2001).  Several 
studies have found that an assumption of the infinitesimal model, equivalent to BLUP with a 
genomic relationship matrix (GRM), performed as well as others (Bayes A or Bayes B, 
Hayes et al., 2009; VanRaden et al., 2009).  In addition, a GRM approach allows inclusion 
of pedigree performance data that cannot be included using those other procedures.  
However, use of a GRM normally requires a multi-step procedure: deregressed evaluations 
and estimation of genomic effects followed by combining with traditional parent averages 
and genomic solutions (VanRaden, 2008; Hayes et al., 2009; VanRaden et al., 2009).  In 
chickens, phenotypes on genotyped animals have been used directly (González -Recio et al., 
2008, 2009), ignoring contributions from ungenotyped animals.  Misztal et al. (2009) 
proposed a single-step procedure (SSP) which utilizes joint information provided by a full 
pedigree and genomic data by modification of the usual relationship matrix for genomic 
selection.  Modifications were shown by Legarra et al. (2009) and implemented by Aguilar 
et al. (2010) in Holsteins.  The objective of this study was to apply the SSP for genomic 
evaluation in broiler chickens to determine if accuracy of prediction could be enhanced using 
phenotypic data from pedigreed animals to augment information obtained on animals 
genotyped (FULL), as compared to a subset which included only phenotypes on those 
animals genotyped (SUB), i.e. the procedure used by González -Recio et al. (2008, 2009). 

Material and methods 
Data.  Body weight at 6 weeks (BW, 100g), breast meat area (BM, cm2), and leg score 
(LEG, 1=no and 2=yes for defect) for two pure lines of broiler chickens were provided from 
Cobb-Vantress, Inc.  A full data set of all animals (FULL, n=183,784 and 164,246 birds for 
lines 1 and 2) and a subset of genotyped animals (SUB, n=3,284 and 3,098 birds for lines 1 
and 2) were analyzed separately for each line.  Genotypes were assayed using the poultry 
60k SNP chip developed by the Chicken Genomic Selection Project.  Descriptions of 
phenotypic records are shown in Table 1.  A total of 57,636 SNP were informative.  The 
training population consisted of records from generations 1 and 2.  The validation population 
contained 799 genotyped animals in generation 3.  
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Statistical analyses. The single-trait model used for BW, BM, and LEG was: 
y Xb Zu Wmp e= + + + , 

where y is the vector of observations; b is the vector of fixed effects including hatch and sex; 
u and mp are vectors of random additive genetic and maternal permanent environmental 
effects; X, Z, and W are incidence matrices; e is the vector of residuals.  Maternal permanent 
environmental effect was not considered for BM and LEG. In a regular BLUP, the 
(co)variance matrix was assumed to 
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where A is the numerator relationship matrix, and 2
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were additive, maternal 
permanent and residual variances, respectively.  In SSP with genomic information, the A 
matrix was replaced by the H matrix with the following inverse (Aguilar et al., 2010):  
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where H is a modified relationship matrix incorporating genomic information, indices 1 and 
2 correspond to ungenotyped and genotyped animals, respectively, and G is a genomic 
relationship matrix that created as in Aguilar et al. (2010).  Genetic evaluations were done by 
modified BLUP90IOD (Tsuruta et al., 2001; Misztal et al., 2002; Aguilar et al., 2010) using 
regular BLUP and SSP with FULL and SUB.  Bayes A approach (Meuwissen et al., 2001) 
was used with SUB only.  Predictive ability was estimated as the correlation between 
predicted breeding value and the sum of true breeding value and residual, ˆr(u,u e)+ .  
Accuracy was estimated as the correlation between predicted and true breeding values,  

ˆ ˆr(u,u) r(u,u e) / h= +  where h is the square root of heritability. 

Table 1: Description of phenotypic records of two lines in each data set 

Trait FULL1 SUB2

Line 1 Line 2 Line 1 Line 2 
BW, 100g  

No. of records 183,784 164,246 3,284 3,098 
Mean 24.50 23.53 25.09 23.36 
SD 3.22 3.17 2.94 2.63 

BM, cm2  
No. of records 40,914 40,576 3,099 2,993 
Mean 42.81 41.09 42.87 41.00 
SD 5.35 5.10 5.47 5.12 

LEG, score  
No. of records 183,784 164,246 3,284 3,098 
Mean 1.19 1.16 1.07 1.12 
SD 0.39 0.37 0.25 0.33 

1Phenotypic records of all animals from three generations.
2Phenotypic records of genotyped animals from three generations.



Results and discussion 
Estimates of variance components using FULL are in Table 2. Heritability for BW, BM, and 
LEG were 0.20, 0.30, and 0.11 for line 1 and 0.17, 0.35, and 0.09 for line 2. Significant 
changes in estimates using SUB (not shown) indicated strong and line-specific selection of 
genotyped animals with heritability of 0.25, 0.21, and 0.09 for line 1 and 0.24, 0.29, and 0.20 
for line 2. The accuracies of prediction are in Table 3. In general, accuracies were lower for 
BM than for BW despite its higher heritability. This is likely caused by incomplete recording 
on BM.  Accuracies were very low for LEG/SUB, especially in line 1. Proportion of LEG=2 
were 19% (FULL) or 7% (SUB) in line 1, and 16% and 12% in line 2, respectively, 
indicating that SUB were preselected stronger in line 1 with accuracies in SSP/SUB much 
lower than in BLUP/FULL.  Pollak et al. (1994) showed that preselection causes upward 
bias for the worst animals and downward bias for the best animals.  

 
Table 2: Estimates of variance components using FULL for the two lines 

Estimates        Line 1       Line 2
        BW BM LEG BW BM LEG 

2
uσ  1.03 4.04 0.02 0.85 4.34 0. 01 

2
mpσ  0.40 － － 0.32 － － 
2
eσ  3.69 9.61 0.13 3.83 7.95 0.12 
2h  0.20 0.30 0.11 0.17 0.35 0.09 

 
Table 3: Accuracy obtained using BLUP, SSP, and two-step Bayes A

Item 
No genomic Information Genomic

BLUP SSP Bayes A 
SUB FULL SUB FULL SUB 

Line 1   
BW 0.46 0.51 0.60 0.61 0.60 
BM 0.30 0.34 0.34 0.40 0.36 
LEG <0 0.28 0.06 0.37 0.09 

Line 2   
BW 0.39 0.24 0.50 0.44 0.47 
BM 0.27 0.33 0.45 0.51 0.51 
LEG 0.24 0.43 0.15 0.73 0.11 

 
For continuous traits, BW and BM performed differently. For BW, the use of FULL 
improved accuracy in line 1 while unexpected deterioration regardless of the use of the 
genomic information with much lower accuracies was found in line 2. One explanation could 
be a specific selection on correlated and probably antagonistic traits. A different selection 
strategy was previously pursued in each line on more than 20 traits, but only 3 traits were 
currently analyzed.  For BM, the improvement of accuracies from SUB to FULL was about 
0.04-0.06 and from no genomic to genomic was 0.04-0.06 (line 1) to 0.18 (line 2).  For LEG, 
a binary trait that was analyzed as a linear, the improvement from no genomic to genomic 
evaluation varied from 0.06 in SUB to 0.09 in FULL for line 1 and -0.09 in SUB to 0.30 in 
FULL for line 2. The increase in accuracy for LEG in line 1 was more modest due to the 
deterioration with SUB in line 2. The low accuracies for LEG, especially in line 1 could 
possibly be the consequence its binary nature, a heritability > 0.3 estimated by threshold 



model (results not reported), i.e. accuracy as defined for a linear trait is only an 
approximation of that for binary traits.  Results with Bayes A were similar to SSP/SUB, with 
Bayes A being slightly more accurate for BM and LEG in line 1 and BM in line 2.  The 
better performance of Bayes A in this case could be due to major genes.   
 
Genomic selection based only on the genotyped animals appears to work well for traits with 
complete recording, at least moderate heritabilities, and no prior strong selection. For traits 
under strong selection, use of only the genotyped subset may not be useful. For traits with 
low hereditability and especially those preselected, an increase in accuracy is only possible if 
the complete data set, genotyped plus pedigree phenotypes, are used. 

Conclusion 
Results of genomic selection using only records of genotyped animals depend strongly on 
selection criteria used for genotyped animals and trait heritability. For some traits the 
accuracy using the subset can be higher than a BLUP evaluation using the complete 
population. For traits evaluated using genotyped animals only with undergoing sequential 
selection, the accuracies may be very low.  The most accurate evaluation would involve the 
complete populations with multiple-trait models and all traits on which the selection was 
practiced. Such an evaluation is possible with a single-step methodology.  A critical part of 
genomic selection is correct model development as flaws in the BLUP model can affect the 
accuracies of genomic evaluations.   
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