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ABSTRACT: Single step genomic methodology provides a 
unified framework to integrate phenotypic, pedigree and 
genomic information in prediction of breeding values for all 
individuals and in estimation of marker effects. 
Computational tools for the implementation of the single-
step methodology are presented. Methodology, quality 
control of samples and different options to create genomic 
relationship matrices are discussed. Computing time for 
construction and inversion of genomic relationship matrices 
and large-scale genome-wide association study for heat 
tolerance in milk yield are presented. 
 
Key words: genomic selection; ssGBLUP; genome-wide 
association; genomic relationship matrix. 
 

INTRODUCTION 
The single step genomic methodology provides a 

unified framework to integrate phenotypic, pedigree and 
genomic information in prediction of breeding values for all 
individuals (Aguilar et al. (2010); Christensen & Lund 
(2010)) and marker effect estimation (Wang et al. (2012)).  

This unified approach modifies the pedigree-based 
relationship matrix to include a genomic relationship matrix 
(e.g. VanRaden (2008))), and the resulting mixed model 
equations involve the regular inverse of the numerator 
relationship matrix, the inverse of the genomic relationship 
matrix and the inverse of the pedigree-based relationship 
matrix for genotyped individuals (Aguilar et al. (2010); 
Christensen & Lund (2010)). 

Minimal modifications of current software are 
necessary in order to incorporate extra relationship 
matrices. Adding such extra relationship matrices to current 
software for genetic evaluation and variance component 
estimation results in the application of genomic information 
in a broad kind of models and species (Misztal et al. 
(2010)). 

Different genomic relationship matrices based on 
different assumptions were proposed (Amin et al. (2007); 
VanRaden (2008); Yang et al. (2010)), and in general 
several quality control of genotypes samples are involved in 
genomic analyses (e.g. (Wiggans et al. (2009); Wiggans et 
al. (2010))) which can affect the successful implementation 
of the single-step genomic methodology.  

Using an equivalent model, estimation of SNP 
effects can be done using genomic estimated breeding 
values (GEBV) and the genomic relationship matrix 
(Stranden & Garrick (2009)), and methodology to include 
un-genotyped individuals as in a single-step framework was 
proposed (Wang et al. (2012)). 

Thus, the main objective is to introduce computing 
tools for the implementation of single-step genomic and for 

the marker effect estimation using the BLUPF90 family of 
programs (Misztal et al. (2002)) 

 
MATERIALS AND METHODS 

PREGSF90. This program is an interface to 
process the genomic information for the BLUPF90 family 
of programs. Although it was developed to help the 
implementation of the genomic selection following the 
single-step methodology ((Legarra et al. (2009); Misztal et 
al. (2009); Aguilar et al. (2010)), it can be use to apply 
different quality controls on genotypes, construction and 
inversion of genomic relationship matrices and pedigree 
relationship matrix for a subset of individuals using 
efficient computing methods (Aguilar et al. (2011)) and 
provide several outputs to detect possible errors with 
genotypes ( e.g. (Simeone et al. (2011))). 

Inputs for using PREGSF90 are a genotype file 
with marker information coded as (0/1/2/5) denoting 
homozygous, heterozygous and homozygous genotypes and 
missing SNP, respectively; a renumber pedigree file and a 
file with cross reference relating samples to renumber id’s 
in the pedigree file. Creation of such files is simplified by 
using a renumbering tool (RENUMF90) distributed with the 
package. 

In a normal run, this program will read all samples 
and apply a default quality control on SNP and samples, 
and create and store on disk. A file with extra relationship 
matrices need to implement singe-step genomic selection. 
This extra information is then used by analysis programs 
for variance component estimation (AIREMLF90, 
GIBBSxF90, THRGIBBSxF90) or solution of mixed 
model equations (BLUPF90, BLUP90IOD). However, 
simplification of the implementation is achieved if a SNP 
file is provided to the analysis programs, and then the 
PREGSF90 will be called automatically. Running 
PREGSF90 as a stand-alone program could be useful to 
perform different quality controls and data cleaning. 

Quality Control. Quality control (QC) is 
performed by default for monomorphic, allele frequency, 
call rate (samples and SNP) and parent-progeny conflicts 
(samples, SNP). All have default parameters but can be 
changed by using appropriate options in parameter files. 
Potential duplicated samples are informed but not removed 
from analyses. Other QC include to check SNP from 
departure from Hardy-Weinberg equilibrium (HWE) and 
high correlated SNP as described in Wiggans et al. (2009)), 
with SNP at the same position and linkage disequilibrium 
calculation and filtering. In such cases when chromosomes 
and positions in genome is required, an extra file with map 
information needs to be provided. Specific chromosomes 
can be removed from the analysis, and sex chromosomes 



can be specified in order to exclude them from parent-
progeny and HWE analyses.  

Mendelian Conflicts. If a parent-progeny check 
for Mendelian conflicts is found, the sample of the progeny 
will be removed. Having such a pair of conflicts in a single-
step genomic implementation results in a non-positive 
definite relationship matrix with genotyped and non-
genotyped individuals. Outputs with statistics are generated 
in order to establish a mislabeled sample or wrong pedigree 
assignment.  

Genomic Relationship. Genomic relationship 
matrices are constructed with the following general 
formula: G = ZDZ’/k, where Z is center matrix Z=M-2p, 
with M the maker allele count matrix, and p, the allele 
frequency: D a diagonal matrix with weights, and k a scale 
parameter.  

From this general formula different genomic 
relationship matrices can be constructed, using available 
options, by changing the values of the allele frequency (i.e. 
allele frequency from a file, calculated from samples or 0.5) 
, or by modifying the scale parameter (i.e. sum (2 p q), trace 
of ZDZ’, etc. ). Default options for the genomic relationship 
matrix include, allele frequency calculated from the 
samples, scale parameter as sum[2 (pq)] and D as an 
identity matrix.  

Inspecting means and correlations from diagonal 
and off-diagonals between both matrices can provide a 
simple detection for incorrect or mislabeled samples that do 
not match with the pedigree file. In the extreme case with 
very low correlations for off-diagonals, the analysis will be 
stopped.  

For blending the pedigree relationship matrix with 
the genomic relationship matrix, the scale of both matrices 
need to match. Results from several studies (Chen et al. 
(2011); Forni et al. (2011); Vitezica et al. (2011)) show that 
an appropriate blending and matching both matrices results 
in unbiased variance components or in prediction of 
unbiased genomic breeding values.  

Output files. Several statistics are printed out, but 
also genomic and pedigree relationship matrices can be 
stored in files for diagnostic or other research studies.  

POSTGSF90. This program calculate SNP 
effects as described in Wang et al. (2012)), and running in 
sequential runs with PREGSF90 and BLUPF90 and allow 
to use differential weights in the genomic relationship 
matrix and allow different SNP variances. 

For each trait and random correlated effects, 
GEBV will be decomposed into SNP effects and stored in 
files. The SNP effects could be outputs as the single effect 
or as moving average of contiguous markers. If required, 
the variance explained by segments will be calculated, 
where segments could be defined with equal size of SNP or 
base on the position, (e.g. 1M BP) 

Plots of SNP effects or variances explained by 
segments will be created and if required, high quality 
graphs can be created with R packages.  

Availability. Compiled version in Linux / 
MacOSX / Windows of both programs are distributed with 
the BLUPF90 package [http://nce.ads.uga.edu/] and the 
documentation with descriptions of options: 
[http://nce.ads.uga.edu/wiki/doku.php]. 

 
RESULTS AND DISCUSSION 

Although the computation of the inverses of such 
matrices has a cubic cost regarding the number of 
genotyped individuals, the efficient methods implemented 
in PREGSF90 can support a large number of genotypes. 
Table 1 presents the computing time for construction and 
inversion of the genomic relationship for different number 
of genotyped samples.  

Large-scale genome-wide scan was performed for 
a multiple-trait test-day model that accounts for heat 
tolerance. Approximately 90 millions of test day records 
from US Holstein cows (AIPL, ARS, USDA) were 
combined with public weather data, involving 9 million 

Table 1. Computing time§ for creation and inversion of 
genomic relationship matrix with different number of 
genotyped individuals. 

Number of 
genotypes 

(thousand) 

Genomic Relationship Matrix 50 k 
Creation 

(min) 
Inversion 

(min) 
10 0.6 0.1 
30 5.4 3 
50 15 14 
70 30 36 

100  60  122 
120 140 208 
150 215 406 

§Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz, 24 CPU, 750 GB RAM. 
  
 

 
Figure 1. SNP effects for milk yield on first parity. 
 

 
Figure 2. SNP effects for heat stress effect on milk yield on 

first parity. 



animals in the pedigree. Details of the data used are in 
Aguilar et al. (2010)). Genotypes for 3,800 bulls using the 
Illumina BovineSNP50 BeadChip (Illumina, San Diego, 
CA) were provided by the Animal Improvement Programs 
Laboratory, Agricultural Research Service, USDA 
(Beltsville, MD).  

A complete evaluation includes creation and 
inversion of the genomic matrix, solving the mixed model 
equations, and estimation of SNP effects, taking about 16 
hours. In the Figure 1 and 2, Manhattan plots for SNP 
effects for milk yield with and without heat stress are 
presented.  

 
CONCLUSION 

Computational tools for the implementation of 
single-step genomic evaluation and genome-wide 
association studies were presented. Different options allow 
checking for data quality and creation of a genomic 
relationship matrix in an efficient way for medium-large 
scale problems. Performing genome-wide scan with 
phenotypic information with no genotypes can be easily 
incorporated.  
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