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ABSTRACT: A theory to account for across-founder 
ancestral relationships is presented, which can consider 
relationships within and across populations. The theory 
assumes finite size of the ancestral population. Ancestral 
relationships can be represented as metafounders, pseudo-
individuals that can be seen as pool of gametes and as 
extensions of random genetic groups. Simple rules exist for 
computation of relationships, inbreeding, and the inverse of 
the relationship matrix. Values of the Ancestral 
relationships can be inferred from marker relationships and 
pedigrees. Once they are computed, use in Single Step 
GBLUP is straightforward and compatibility of marker and 
pedigree information is automatic. 
Keywords: Relationships; BLUP; Genomic; Pedigree; 
Effective size 
 

Introduction 
 

Markers reveal relationships across populations 
with no common pedigree. For instance, VanRaden et al. 
(2011) and Legarra et al. (2014) quantified relationships 
between “unrelated” breeds of cattle and sheep, 
respectively. Markers also reveal relationships across 
founders of a population. These relationships exist due to 
the finite size of the population and of the genome. The 
more we use markers for genomic evaluation, the worse the 
hypothesis of “unrelatedness” becomes. This makes 
comparison across pedigree and genomic relationships 
awkward and has relevance for some applications, in 
particular for Single Step methods. In addition, genomic 
relationships do not depend on pedigree length, whereas 
pedigree relationships do. 

Jacquard (1974) presented relationship matrices 
allowing for across-founder relationships due to finite size 
of the population. VanRaden (1992) presented algorithms to 
compute inbreeding where animals with missing parents 
had non-zero inbreeding. VanRaden et al. (2011) used 
across-breeds relationships based on markers. Christensen 
(2012) presented a method in which across-founder 
relationships were constructed and estimated from marker 
data in a subset of individuals and a pedigree, in a Single 
Step context. Sullivan and Schaeffer (1994) suggested the 
consideration of unknown parent groups as random. The 
purpose of this work is to give a general and coherent 
framework for the consideration of relationships across 
founders within population and across founders across 
population through the use of metafounders, which are 
pseudo-individuals that can be seen as pools of ancestral 
gametes. Use of metafounders simplifies the consideration 
of ancestral relationships, extends naturally the notion of 
unknown parent groups, simplifies the construction of 

relationship matrices for single or crossed populations, and 
leads naturally to easy algorithms for inversion of the 
relationship matrix. Compatibility of genomic and pedigree 
relationships is warranted if ancestral relationships are 
inferred from markers. 

 
Theory 

 
Ancestral relationships. Assume that the 

founders of a single population are drawn with replacement 
from a larger, but limited, population with 2𝑁𝑒  gametes 
(Figure 1). This generates self- and across- relationships of, 
respectively, 1 + 𝛾/2  and 𝛾 , where the ancestral 
relationship 𝛾 = 1/𝑁𝑒 . Several, possibly overlapping, 
populations can be equally considered (Figure 2), with an 
extended set of ancestral relationships 𝚪. 
 

 
Figure 1: Ancestral and base population and pedigree 
 
 

 
 
 
Figure 2: Two populations 
 



 
Metafounders. Instead of setting up across-

individuals relationships using 𝛾  coefficients, one can 
define metafounders. These are pseudo-individuals that 
represent pools of gametes (Figure 3). They have a self-
relationship of 𝛾  and an inbreeding coefficient of 𝛾 − 1 . 
The interpretation of 𝛾 − 1 is the heterozygosity of the pool 
of gametes. Metafounders can also be seen as an extension 
of unknown parent groups, where these unknown parent 
groups now would be random and contain information on 
inbreeding of their “offspring” – something that is absent 
from the original formulation but in agreement with 
VanRaden (1992) idea for inbreeding with missing 
parentships. Also, if the ancestral population is considered 
to be infinite, 𝛾 = 0  and the usual structure of the 
population is found. 
 
 

 
 
Figure 3: Two populations and metafounders 

 
Using metafounders one can create pseudo-

pedigrees (Figure 4). Using pseudo-pedigrees, it is possible 
to use the usual recursion rules, and more importantly, 
Henderson’s rules (with very minor modifications) for 
decomposition and sparse inversion of A. In short, 
Henderson’s rules do not change, with the proviso that 
Mendelian sampling variances need to be computed 
previously using the typical rule Dii = 0.5 − 0.25(Fs + Fd) 
where if for instance the sire is a metafounder then Fs =
γ − 1. Note that the algorithm works even for = 0 , which 
is the regular case.  

 
1 0 0  
2 0 0 
3 1 1 
4 1 1  
5 1 2 
… 
14 11 12 
 
Figure 4: Pedigree file for Figure 3 

 
 

Inferring ancestral relationships. Ancestral 
relationships can be inferred by setting as the reference 
point allelic frequencies of 0.5 for all markers. This 
amounts to marginalize the likelihood over the unknown 
distribution of allele frequencies (Christensen (2012)). The 
likelihood of observed genotypes is: 
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Where m refers to the marker genotypes, 𝑝  contains the 
allelic frequencies, n2 denotes the number of genoyped 
animals, 𝒁 is a matrix with genotypes coded as {-1,0,1}, 
and 𝑨22𝚪  is the relationship matrix across genotyped animals 
including ancestral relationships. Inferring 𝚪and 𝑠 from this 
likelihood is not straightforward. An alternative is to use a 
method of moments, equating average pedigree and 
genomic relationships and average pedigree and genomic 
inbreeding (Vitezica et al. (2011); Christensen et al. 
(2012)). Consider for instance two populations A and B.  
For large enough populations 𝚪and 𝑠 can be expressed as:  
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The procedure is very similar to VanRaden et al. 

(2011). Note that this proceeds by fitting A (pedigree 
relationships) to the genetic base of G (genomic 
relationships) and not the opposite. This makes sense 
because genomic relationships are free from missing 
pedigree, pedigree errors or pedigree depth. 

 
Use in the Single Step 

 
The final aim of this theory is to refine the 

framework for the Single Step GBLUP (Aguilar et al. 
(2010); Christensen and Lund (2010)). In practice, the 
theory in this paper can be used as follows. First, infer 
ancestral relationships 𝚪 and scaling factor 𝑠 based on 
existing pedigree and markers. Construct 𝑨𝚪−𝟏 , 𝑨22𝚪−1  and 
𝑮 = 𝒁𝒁′/𝑠, and combine them in  

 

𝑯−1 = 𝑨𝚪−1 + �𝟎 𝟎
𝟎 𝑮−1 − 𝑨22𝚪−1  � 

 
Compatibility of relationships is automatic by use 

of 𝚪and marginalization over unknown allelic frequencies 



(Christensen (2012)). Note that tuning for crossbreds is also 
automatic, whereas this tuning is otherwise difficult (Harris 
and Johnson (2010)). It can also be shown that inclusion of 
ancestral relationships increases the range of values of 𝑨22𝚪  , 
and therefore decreases the values of 𝑨22𝚪−1. 

This explains why, in practical applications, 
Aguilar et al. (2010) and Tsuruta et al. (2011, 2013) found 
more accurate and less biased valuations using  a weight 
𝜔 < 1 on 𝑨22−1 . 

 
Example 

 
Consider the pedigree in Figure 4. Assuming unrelated 
founders, relationships between individuals 8 (pure breed 
1), 10 (pure breed 2) and 14 (crossbred, 56% breed 1 and 
44% breed 2, grandson of 8 and of 10) are 𝐴𝑠𝑢𝑏𝑠𝑒𝑡 =

�
1 0 0.313
0 1 0.25

0.313 0.25 1.063
�. If we consider within and across-

base population relationships in 𝚪 = � 0.1 0.05
0.05 0.2 � we 

obtain: 

𝐴𝑠𝑢𝑏𝑠𝑒𝑡 = �
1.05 0.05 0.375
0.05 1.10 0.341

0.375 0.341 1.095
� 

where the relationship between 8 and 10 appears, which in 
turn slightly increases the inbreeding coefficient of 14. 

 
Conclusion 

 
We have sketched a coherent theory to consider 

ancestral relationships in pedigreed populations, how to use 
them efficiently, and how these can be estimated from 
genotypic data. The notion of metafounder condensates the 
information of ancestral population and allows for simple 
algorithms. This work lays the foundations for the genomic 
analysis of complex populations, possibly with crosses and 
missing parentships. Testing in real data sets is needed. 
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