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Summary

The BLUPF90 suite is a collection of software for mixed-model analysis with focus on
breeding and genetics applications. Solving of mixed model equations and variance
component estimation are supported for general multiple trait, multiple effect models, with
different model design per trait and correlated random effects. Genomic analyses using
single-step GBLUP are fully integrated in all programs with efficient optimizations for large
scale genetic evaluations. The state of the art of the BLUPF90 suite with a focus on genomic
prediction using single-step genomic BLUP is presented.
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Introduction

The BLUPF90 suite is a collection of software for mixed-model computations with a
focus on breeding and genetics applications. It was originally developed to support a Fortran
90/95 programming course in computational techniques in animal breeding that was taught at
the University of Georgia in 1999 by I. Misztal. Programming examples from that course
lead to an idea of a general yet simple BLUP program, to calculate solutions of mixed model
equations, that could be easily modified to accommodate and test new methodologies in
animal breeding. The resulting program was called BLUPF90 and supports general multiple
trait, multiple effect models, with different model design per trait, allows missing traits,
several correlated random effects, such as direct and maternal genetic effects, random
regression models, dominance effects and flexibility to handle several pedigree files or
different covariance structures defined by the user. A general description of the software and
its philosophy was presented previously (Misztal 1999).

The original BLUPF90 program evolved to allow the estimation of variance
components (REML, Gibbs sampler), support for threshold models, computations of
solutions and approximations of accuracy for large scale genetic evaluations, but instead of
creating a single big program, several programs were developed that are generally known as
the BLUPF90 suite of programs (Misztal et al., 2002).

The original simplicity and flexibility of the BLUPF90 program allowed a simple but
efficient algorithm program to be incorporated to handle genomic information, known as
single-step genomic BLUP (ssGBLUP) (Aguilar et al., 2010). This uses simple modifications
to incorporate new relationship matrices and nearly all models supported by programs of the
BLUPF90 suite became ready to incorporate genomic information (Aguilar et al., 2011).

The objective of this work is to present the state of the art of the BLUPF90 suite with
focus in genomic prediction using single-step genomic BLUP.
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Description of programs

A full picture of some of the available programs is presented in Figure 1.

Data preparation

RENUMF90, on the top of the diagram, uses a specific parameter file that reads data
(records, pedigree and genotypes, possibly in alphanumeric format) and prepares a
renumbered data file, a renumbered pedigree, a file with cross-references to the genotype file
and the parameter file to be used in the remaining programs (variance component and BLUP
predictions). Some of the current features of RENUMF90 include trace back of a given
number of generations of animals with either phenotype and/or genotype information,
inclusion of inbreeding in the pedigree file to create the inverse of the numerator relationship
matrix accounting for inbreeding, handling of unknown parent groups, merging of effects
(e.g. herd-year-season). It also generates numerical statistics of data, cross-references (i.e.
alphanumeric identities to renumbered levels) and tables with frequencies for each effect.

Once data is renumbered, all BLUPF90 programs are controlled by a unique
parameter file that specifies: the input data file; model design; (optionally) covariance
structures: pedigree, genotype or user-defined files; and (initial) values of variance
components for BLUP or variance component estimation. Extra options to control specific
features of each program can be added by optional parameters.

BLUPF90

Solving of mixed model equations to get BLUPs and BLUEs was the original purpose
of the BLUPF90 programs. These are stored in memory and solutions can be obtained by
direct inversion or by iterative methods. The default method is the preconditioned conjugate
gradient algorithm (Tsuruta et al., 2001). Pedigree additive relationships (with or without
unknown parent groups) are supported, and these can be combined with genomic information
by adding extra relationship matrices following the theory of ssGBLUP (Aguilar et al., 2010,
Christenssen and Lund, 2010). Other (co)variance structures can be defined including:
parental dominance, metafounders (Legarra et al., 2015), relationships derived for honey bee
production (Bienefeld et al., 2007) and also user defined matrices, e.g. for genomic epistasis
(Vitezica et al., 2017) or additive-dominance with inbreeding (Fernández et al., 2017) or an
user defined matrix.

Prediction error (co)variances can be obtained from the sparse inverse of the MME,
to derive accuracy for animal models or for random regression models. BLUPF90 supports
heterogeneous residual variances as used in GIBBS3F90 where the user can supply residual
variance components as a file.

Variance components

Programs to estimate variances components implement REML and Gibbs sampling
methods (Thompson et al., 2005). There are two programs available for REML: one that
implements an EM-REML algorithm (REMLF90) which is very reliable but slow to
converge and another that implements the Average Information REML (AIREMF90) which
is much faster. In the case of the AIREMLF90, standard errors of any function of variance
components (heritability, genetic correlations) can be obtained following Meyer and Houle
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(2013). A model with support for continuous heterogeneous residuals is implemented in
AIREMLF90 following Druet et al., 2003. Using optimized techniques for sparse matrices
operations implemented in YAMS (see below) decreases computing time by one order of
magnitude.

Gibbs sampling programs decrease memory requirements for estimation of variance
components in comparison with REML programs. They are highly optimized for storage of
mixed model equations and for block sampling for multiple trait (GIBBS1F90), and multiple
traits and random correlated effects (GIBBS2F90), and heterogeneous residual variances
defined by classes (GIBBS3F90). The program THRGIBBS1F90 estimates variance
components for multiple trait threshold-linear traits, and THRGIBBS3F90 adds support for
heterogeneous residual variances.

Gibbs sampling programs are capable of any number of nonzero elements in MME as
long as the memory is available, which it is beneficial for genomic models. In the current
implementations of REMLF90 and AIREMLF90 this is a limitation, but it will be removed
in the near future.

Large scale analyses

BLUP90IOD is used to compute solutions for large scale genetic evaluations that use
iteration on data with the preconditioner conjugate algorithm solver (Tsuruta et al., 2001).
Modified versions provide support for heterogeneous residual variance, multiple breed
evaluation (Legarra et al., 2007), optimized preconditioners for random regression models
(Aguilar et al., 2010), and threshold-linear models.

ssGBLUP genomic evaluations were originally implemented storing G-1-A22
-1 in core

(Aguilar et al., 2010; Aguilar et al., 2011), however for large number of genotyped
individuals, i.e. more than 150,000 (Aguilar et al., 2014) the computing time was a limiting
factor. The APY method presented by Misztal et al., (2014) which computes a sparse inverse
of G-1 based on a core set of animals, coupled with an efficient sparse implementation of A22

-

1 (Masuda et al., 2016a) is now successfully implemented for national genetic evaluations
with large number of genotyped animals (Lourenco et al., 2015; Masuda et al., 2016b). A
complete formula for unknown parent groups in ssGBLUP using QP-transformation (Misztal
et al., 2013) is also implemented in BLUP90IOD.

Genomic information

PREGSF90 is an interface to process the genomic information for the BLUPF90
family of programs. Originally developed to help the implementation of ssGBLUP, it
implements a set of quality control on genotypes, and provides several outputs to detect
possible errors with genotypes (Aguilar et al., 2014). Using POSTGSF90 solutions from
ssGBLUP are used to backsolve estimates for SNP effects, which can be used to predict
interim direct genomic values for newly genotyped individuals using PREDF90.

Sparse-dense matrix efficient methods

A key feature of the BLUF90 programs was a sparse matrix module that allowed
efficient programming of sparse matrix computations. Sparse matrix operations use the
module FSPAKF90 (Misztal & Perez-Enciso 1998), an interface to FSPAK (Perez-Enciso et
al., 1994). For sparse matrices, FSPAK is very efficient. With the incorporation of genomic
information with single-step GBLUP, large blocks of dense matrices deteriorate the
performance of the FSPAK subroutines. Masuda et al., (2015) implemented a new module in



Proceedings of the World Congress on Genetics Applied to Livestock Production, 11. 751

the BLUPF90 suite (YAMS) that detects such dense blocks in the mixed model equations and
rearrange computations using dense operations with optimized and parallelized subroutines.
This reduces drastically the computing time for variance component estimation using REML,
or to get exact accuracies by inversion.

Availability

All but the large-data programs are available online as well as full wiki page with
documentation for each program and examples (http://nce.ads.uga.edu/software/). The
programs are free for research use but their use should be acknowledged in publication.

Figure 1. Main programs of BLUPF90 suite and their relationship
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