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Abstract: Land use change is an important driver of trends in streamflow. However, the effects
are often difficult to disentangle from climate effects. The aim of this paper is to demonstrate that
trends in streamflow can be identified by analysing residuals of rainfall-runoff simulations using
a Generalized Additive Mixed Model. This assumes that the rainfall-runoff model removes the
average climate forcing from streamflow. The case study involves the Santa Lucía river (Uruguay),
the GR4J rainfall-runoff model, three nested catchments ranging from 690 to 4900 km2 and 35 years
of observations (1981–2016). Two exogenous variables were considered to influence the streamflow.
Using satellite data, growth in forest cover was identified, while the growth in water licenses was
obtained from the water authority. Depending on the catchment, effects of land use change differ,
with the largest catchment most impacted by afforestation, while the middle size catchment was
more influenced by the growth in water licenses.
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1. Introduction

Global water resources are limited and under pressure across the world [1]. The total amount of
water that can be used for irrigation, water supply or power generation is defined by the transfer of
moisture between climate and landscape [2]. The effect of climate on water resources is often concealed
because the processes in the landscape are changing [3,4].

There have been a number of recent publications identifying the combined impact on water
resources of land use change and climate change and variability (e.g., [5–8]). However, the identification
of land-use trends is difficult due to the effect of the overlying climate trends and variability [5,8]. As a
result, disentangling the different impacts on streamflow is not an easy task, particularly since it is
ver difficult to perform paired catchment studies, or before and after studies, at regional scales [5].
Several papers have specifically indicated a positive relationship between changes in forest cover and
streamflow [5,6,8]. These results appear to be reflected in Uruguay, where afforestation is suggested
to cause a reduction in runoff volumes and peak flows [9,10]. But climate variability, especially the
El Niño Southern Oscillation, also impacts flow volumes in the south American region [11–13], and this
would need to be accounted for.

Essentially, identifying the impact of land use change on streamflow can be approached in
two different ways. The first is through paired catchment studies (i.e., [9]), but this tends to be
unmanageable for larger catchments and is difficult in low data environments. The second option
is through time trend analysis (i.e., [5]). Over time, several different statistical techniques have been
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developed for time trend detection, examples of which are the Mann-Kendall [14,15] and Pettitt
test [16]. These two techniques (Mann-Kendall and Pettitt) are popular non-parametric tests used for
detecting slowly-varying as well as abrupt changes [17–20]. Trend analysis can be performed under
the assumption of nonstationarity, where variables are detrended into two or more components before
analysis, or it can be performed by scaling the hydrological process to model the trend as a stochastic
component (and assuming stationarity) [21]. An alternative to classical trend analysis, such as Mann
Kendall, is the use of Generalized Additive Mixed Modeling (GAMM) [22,23], which deals with
missing data and/or irregularly spaced samples in time. The mixed modelling addition means that
the model is also better suited to analysing autocorrelated data. In addition, GAMM models can
incorporate multiple variables and identify the importance of different variables included in the overall
trend model.

Despite a plethora of techniques, it can still be difficult to identify trends. Some work has
suggested identifying non-stationary parameters in models to reflect land use change [24]. However,
recently, Serinaldi et al. [25], highlighted that statistical analyses of trends can only offer an indication
of a trend or non-stationarity, as many of the analyses are dependent on the length of data and the
analysis performed. In addition, Serinaldi et al. [25] warn against using a non-stationary approach, as it
is difficult to assess whether a data series is truly non-stationary. Without a supporting physical theory
or data, trends can therefore never be fully confirmed, which is a challenge in low data environments.

The motivation for this work is twofold, the first is methodological. As the classic time
trend analysis can be problematic [25], this study proposes a different approach, which combines
rainfall-runoff modelling with a GAMM regression modelling of the residuals to specifically identify
the drivers of trends. The second motivation is regional, past studies in the region have only compared
the runoff response to similar rainfall events, before and after land use change [10], and compared
landuse effects using paired catchments [9]. The problem with these prior studies is that the approach
is difficult to extrapolate to other catchments in the region, and it does not eliminate the effect of
climate variability, which this study addresses.

In general, optimizing parameters for a climate forced rainfall-runoff model to a flow data series
will result in the average optimized effect of the climate forcing on the streamflow series, as the model
cannot fit any trend that is not conceptualized in the model [21]. This suggests that the residuals
of a rainfall-runoff model reflect any exogenous trends not reflected in the model. The aim of this
paper is therefore to demonstrate for a case study catchment the use of GAMM modelling on the
residuals of a climate forced rainfall-runoff model. More specifically, we will use GAMM in a relatively
low data environment to identify: (1) do the residuals of the rainfall-runoff model contain remaining
seasonal and global trends? (2) can additional trends due to land use change impacts be identified in
the residuals from simple time series?

2. Study Area and Dataset

The Santa Lucía catchment is the main source of drinking water for Uruguay. It delivers water for
1.6 million people (about 60% of the population) and supports several agro-industrial activities. In
this study we focus specifically on the Santa Lucia at Paso Pache gauging station and the subsequent
upstream gauged sites. This area drains a sub-catchment of Santa Lucia with a relatively rich
hydrometeorological network (28 rain gauges, 3 stream gauges and 1 climatological station, Figure 1).
For the study, the Paso Pache catchment is conceptualized as three nested catchments located at local
gauging sites: Catchment 1 (C1), is the largest catchment defined at Paso Pache (4896 km2); Catchment
2 (C2), is the mid-size catchment which drains to Fray Marcos station (2744 km2), upstream from Paso
Pache; Catchment 3 (C3), is the smallest catchment limited at Paso de los Troncos (687 km2), upstream
from Fray Marcos.
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Figure 1. (a) Relief, monitoring system and sub-catchments of Santa Lucía at Paso Pache (C1, 4896 km2),
Fray Marcos (C2, 2744 km2) and Paso de los Troncos (C3, 687 km2). (b) Main land uses observed
during 2015.

The elevation profile of Paso Pache is characterized by rolling landscape and plains (Figure 1a).
The soils are developed from silt and clay from Cretaceous formations, resulting in shallow soils with
low water storage capacity. In 2015, the main land use was grassland (54%), followed by small grains
and row crop agriculture (34%), forestry (Eucalyptus, 9%), and urban areas (3%) (Figure 1b). However,
the forestry and agriculture sectors have changed considerably over the last 30 years: the percentage
of forest cover has increased substantially (Figure 2a, based on Google Earth imagery and forest cover
classification from the visible images; and the local water authority (DINAGUA, Dirección Nacional
de Aguas) has increasingly provided water allocations mainly for irrigation, livestock and domestic
(Figure 2b).

Figure 2. (a) Percentage of sub-catchment area used for forestry. (b) Water licenses.

The annual average precipitation is around 1300 mm. The monthly mean precipitation is fairly
uniform over the year but with substantial interannual variability (i.e., there is no rainy season but
there may be dry or wet years, Figure 3a). Potential evapotranspiration follows temperature, and it
reaches a minimum during May–June–July (winter in the southern hemisphere, Figure 3b), and as a
result monthly runoff is highest between June and October (Figure 3c).
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Figure 3. (a) Boxplot of monthly precipitation, (b) potential evapotranspiration, (c) runoff at Paso de
los Troncos, and (d) mean temperature for the period 1981–2016.

3. Methodology

For this study, land use change is hypothesized to create a change in the rainfall-runoff response
of a catchment. Figure 4 shows a schematic representation of the proposed method. A climate forced
and calibrated rainfall-runoff model should remove the variation in the streamflow due to ‘normal’
year-to-year and seasonal climate variability (Figure 4, step 1). As a result, this will amplify the effect
of anthropogenic activities such as afforestation and water allocations in the residual series. Therefore,
a trend analysis on the residual series of stationary rainfall-runoff model (Figure 4, step 2), should
identify a remaining “global” trend (being long-term increasing or decreasing trend) or a seasonal
trend (being a seasonal cycle) in the runoff behavior more easily than using the original series (aim 1).
Finally, the runoff change is quantified using the relationships from step 2 using a model stationarity,
outlined in Section 3.3 (Figure 4, step 3). Another way to express this is that we use the rainfall-runoff
model to remove climate variation in the streamflow and to amplify any remaining trends.

Figure 4. Shematic representation of the steps used to indentify the origin of trends and quantify the
runoff change.
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Subsequently, the remaining residual series can still include an unaccounted global and seasonal
trend (for example, a seasonal trend due to an interaction of forcing variables on vegetation, such
as crop growth). Removing any remaining global and seasonal trends, the effect of afforestation
and water allocations would be more easily identified in the series (aim 2). In this section, we
describe the rainfall-runoff model and the GAMM models used for trend analysis of the rainfall-runoff
model residuals.

3.1. Rainfall-Runoff Simulation

The GR4J model was selected for the rainfall-runoff simulations. GR4J is a daily lumped
hydrologic model using precipitation and evapotranspiration as climatological forcing [26]. GR4J
has four parameters: capacity of the production store (X1, mm), underground flow exchange
coefficient (X2 mm/day), capacity of routing store (X3, mm), and time base for the unit hydrograph
(X4, days). Due to its simplicity, this model has been widely used in several landscapes for
different purposes [27–29]. It is available in the AirGR [30] and hydromad (Andrews et al.,
2011) packages for R software [31]. Here, the hydromad implementation of the model was used
(http://hydromad.catchment.org/). This package offers a variety of tools to handle data, optimize
models, and to analyse and visualize results.

This study used the lumped structure of GR4J without spatial implementation across
sub-catchments. The three individual nested gauging sites were used for calibration of the lumped
simulation (Figure 1a), offering three simulation scenarios defined by the catchment scales. As a
precipitation forcing, the mean areal precipitation of each catchment was estimated based on kriging
of the individual rainfall stations by a spherical variogram using the gstat R package [32,33]. In the
absence of an evapotranspiration network, the data from the Las Brujas climatological station,
located 80 km southwest of the center of the study area, was used (56◦20′25′′ W, 34◦40′17′′ S) to
estimate the Penman-Monteith potential evapotranspiration. Based on this, homogeneous potential
evapotranspiration was assumed for the region.

The hydromad package offers a variety of assessment and objective functions such as the mean
absolute error, root mean squared error, and Nash-Sutcliffe efficiency. For this study a combination of
R Squared using square-root transformed daily data and the R Squared aggregated at monthly time
steps was used as the objective function [34]. This choice is made to balance the fit to the average
flow behavior with the daily variation across all flow regimes [35]. The first year (1981) is defined
as the warm-up period and the model is fitted to 1982–2016 using the least squares Nelder-Mead
optimisation. To assess the performance of the model calibrations, the skill of GR4J was evaluated
at monthly scale after aggregate daily runoff simulations. No validation was performed, as GR4J is
only used to remove the climate effects from the data series, assuming that the model fit on the series
captures the “average” climate forcing behaviour.

3.2. Trend Simulation of Runoff Residuals

Generalized Additive Mixed Modeling (GAMM) [23] was used to identify trends in the runoff
residuals (Qres). The advantage of using GAMM is that this allows very flexible and non-linear
regression modelling, something which is not possible with standard linear regression. The GAMM
modelling analysed the residuals aggregated to a monthly scale. Qres is defined as the difference
between simulated runoff (Qsim) and observed runoff (Qobs) at a monthly scale. The aggregation to
the monthly time step is firstly to simplify the management of autocorrelation in the model to a basic
first order autocorrelation and secondly to speed-up the GAMM computations. Subsequently, the
residuals are log transformed to relative residuals (TRR, Equation (1)) to stabilize the GAMM residual
variance as the monthly GR4J residuals have a highly skewed distribution.

TRR = log
(

Qsim −Qobs
Qobs

+ 1
)

(1)

http://hydromad.catchment.org/
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In Equation (1), the constant 1 is added to avoid negative values within the logarithmic operator.
A key element of GAMM modelling is the use of smooth functions applied to the variables to allow
nonlinear modelling. However, this increases the risk of overfitting. The approach in this study is to
consider several linear and nonlinear explanatory variables as the relationship between predictand
and predictors cannot be known a-priori (Table 1).

Table 1. GAMM models used.

Model Id. Equation (TRR Equal to)

L1 l(G) + s(S)
S1 s(G) + s(S)
L2 l(G) + s(S) + s(FC)
S2 s(G) + s(S) + s(FC)
L3 l(G) + s(S) + s(WL)
S3 s(G) + s(S) + s(WL)
L4 l(G) + s(S) + s(FC) + s(WL)
S4 s(G) + s(S) + s(FC) + s(WL)

In Table 1, G represents an unspecified global trend, and is defined simply as 1 to 442 (which
is the total number of months). S describes the seasonal behavior and is defined as month within
each year (ranging from 1 to 12). FC is the Forest Cover as the percentage of surface used for forestry
from Figure 2a (age of the forest has not been taken into account). In absence of information about
water allocations, the number of Water Licenses (WL, m3/year/km2) provided by DINAGUA is used
(Figure 2b). Finally, the operator l() indicates a linear operator and s() indicates a polynomial smooth
function. The letters “L” and “S” in the model Id indicates whether TRR is modelled by a linear or a
smooth function for G, respectively. In this case we used the cubic shrinkage spline [23] for the smooth
functions. Additionally, to restrict the flexibility of the splines, the number of “knots” (k) in the spline
was limited to a relatively small value (3). Both the shrinkage spline and the low number of knots
reduces the risk of overfitting the model.

To compare the different regression models we focus on the adjusted r2 as a performance measure
as this is directly related to the variance explained in the data. The adjusted r2 is a penalised version of
the r2 taking into account the number of parameters in the model:

adj r2 = 1−
∑ (yobs−ypred)

2

n−p−1

∑ (yobs −mean(yobs))
2 (2)

Here n is the number of data points, p is the number of parameters in the model, and y is the
response variable.

3.3. Quantifying the Effect of Land Use Change and Water Licenses on Streamflow

To quantify the effect of land use change is a two-step process: (1) Estimation of a new TRR time
series related to the desired scenario (TRR∗). TRR∗ represent the residuals of rainfall runoff-model
without the impact of a specific land use change. This involves individually setting the variable FC
and WL to zero and using the best performing GAMM model to predict streamflow (with FC and/or
WL = 0), and the same S and G to generate TRR∗. (2) The new time series of runoff without the
specific land use change is calculated based on the original Qsim. This hypothesizes that the change in
land use would have negligible effect on the original GR4J calibration. Thus, the new runoff from the
scenario (Qscen) is computed by Equation (3):

Qscen =
Qsim

exp(TRR∗ − 1)
(3)
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4. Results

4.1. Rainfall-Runoff Model Performance

The GR4J model generally had a good calibration performance for all sites at the monthly time
scale. Based on the Nash - Sutcliffe efficiency (NSE), R-squared (r2) and BIAS; the fit was better for the
largest catchment C1, followed by C2 and finally C3 (Table 2). Figure 5 qualitatively suggests that the
resulting TRR increases in the first part of the simulation (approximately between 1981–1995 approx.)
for the three sites. Catchment C1 show the highest increase in TRR in the early part of simulation
(Figure 5a), preliminarily identified in the Figure by linear regressions on the early and late parts of the
simulation period (only for illustration purposes). TRR for catchments C2 and C3 are also shown in
Figure 5b,c with similar behavior but with a lower rate at the begining.

Figure 5. (a) Transformation of Relative Residuals (TRR, gray points), linear regression of TRR
(black line) and histogram of TRR (bars) for C1 (a,b), C2 (c,d) , and C3 (e,f).



Water 2019, 11, 1433 8 of 15

Table 2. Goodness of fit of simulated runoff at daily and monthly scale.

Daily Scale Monthly S cale
Catchment NSE BIAS r2 NSE BIAS r2

C1 0.82 −0.04 0.85 0.91 −0.04 0.91
C2 0.81 −0.05 0.84 0.85 −0.03 0.86
C3 0.57 −0.07 0.79 0.78 −0.10 0.80

4.2. GAMM Analysis of Runoff Residuals

The GAMM models outlined in Table 1 were fitted to the transformed runoff residuals (TRR).
Table 3 summarizes the significance level of the explanatory variables and the explained variance in
the models in terms of adjusted R-squared (r2). The adjusted r2 is adjusted for the number of variables
in the model, which means it can be compared across models with different numbers of variables.
The explained variance of the models is limited, as indicated by the low r2, with about 10–30% of
the variance in the TRR explained by the model. The initial analysis involved the models L1 and S1,
which shows the global trend (G) and seasonal trend (S) to be highly significant (p < 0.001) regardless
of smoothing. The significance of G indicates a trend in the residuals, which is not removed by the
rainfall-runoff model. Similarly, the significance of S suggests there is a remaining seasonal trend in
the residuals that is not accounted for by the seasonality in evapotranspiration and possibly rainfall
(Figure 3) filtered by the rainfall-runoff model. The higher adjusted r2 in model S1, relative to L1,
is a reflection of the increased flexibility of the model to represent the non-linear response. At this
point, there is no direct theory behind G and S, and these trends can be a composite of different other
variables, or G and S can mask other trends in the data.

Table 3. Significance level of explanatory variables and adjusted r2 of GAMM models.

Catchment Model Id. Intercept G S FC W Adjusted r2

L1 ** ** *** ⊗ ⊗ 0.115
S1 *** *** ⊗ ⊗ 0.188
L2 *** *** ⊗ 0.208

C1 S2 *** *** ⊗ 0.211
L3 *** ** *** ⊗ * 0.144
S3 *** *** ⊗ 0.188
L4 *** *** * 0.222
S4 *** *** 0.214
L1 ** * ⊗ ⊗ 0.096
S1 * * * ⊗ ⊗ 0.072
L2 * * ⊗ 0.125

C2 S2 * ** ⊗ 0.117
L3 . * ⊗ ** 0.134
S3 * ⊗ *** 0.139
L4 . * ** 0.134
S4 * . ** 0.149
L1 *** *** *** ⊗ ⊗ 0.17
S1 *** *** ⊗ ⊗ 0.285
L2 *** *** *** *** ⊗ 0.269

C3 S2 *** *** . ⊗ 0.295
L3 *** *** *** ⊗ ** 0.229
S3 *** *** ⊗ 0.285
L4 *** *** *** *** 0.269
S4 *** *** . 0.295

Signif. codes: 0 < (***) < 0.001 < (**) < 0.01 < (*) < 0.05 < (.) < 0.1 < ( ) < 1 ⊗ variable not considered.

GAMM also allows inspecting the trends in the individual variables. The panels in Figure 6
represent the impact of the G and S variables in model S1. The x-axis represents the values of the
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variables while the y-axis represents the marginal change in the predictand relative to the mean value
(in this case TRR) as a result of the impact of the variable (and the effect of all other variables removed).
For example, for C1 and s(G), early in the analyzed period, streamflow is higher than the average
(negative values on the y-axis), but streamflow decreases over time (gets less negative on the y-axis)
over time. Later in the period (after about 150 months), the streamflow is lower than the average
(positive values on the y-axis), but this effect reduces again towards the end of the period when the
variable dips back to a negative response. This indicates a return to higher than average streamflow
towards the end of the overall period. This response is similar across the three catchment scales
(Figure 6c,e).

Figure 6. (a,c,e) Global (G) and (b,d,f) seasonal (S) terms (continuous black line) and standard error
bounds (dashed line) for S1 models (TRR = l(G) + s(S)).
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The linear response in model L1 is less informative. Here, the slope of G is positive (Table 4),
and this only suggests a long term decrease in streamflow (as there is a long term increase in the TRR).
Interpreting the seasonal trend at C1, this is concave up, suggesting lower than average streamflow
in early winter, and higher than average streamflow in the summer (Figure 6b). For C2, where the
seasonal trend in model S1 is not significant (Figure 6d), the GAMM model produces a flat line around
0, as a result of the shrinkage splines used in the model [23]. For C3, the seasonal response is reversed
and suggests a higher than average streamflow in the winter in this smaller headwater catchment,
while lower than average streamflow occurs in summer(Figure 6f). However, since in models S1 and
L1, some of the other trends can be incorporated in the seasonal and global trends, the significance of
the responses needs to be retested after inclusion of other variables.

Table 4. Goodness of fit of simulated runoff at monthly scale.

Catchment Slope (G) p-Value

C1 1.12× 10−3 8.19× 10−5

C2 1.27× 10−3 1.92× 10−2

C3 1.93× 10−3 9.18× 10−4

To identify if forest cover (FC) and the growth in water licenses (WL) can explain the trends in
the residuals, these variables are now included step by step in the model. The next step in the analysis
involves the models L2 and S2, which consider G, S and FC as explanatory variables. Model L2 and S2
have higher adjusted r2 than models L1 and S1, indicating these models explain more of the variation
in TRR (Table 3). These models specifically test whether FC explains the trend better than G or S, as
the shrinkage spline used [23] will allow insignificant variables to shrink to 0.

In model L2 and S2 G is no longer significant for catchments C1 and C2 while in C3 G remains
significant. This suggests that for the models for C1 and C2 the smooth FC trend explains the trend in
the data better than G, and there is no difference in whether G is considered a linear trend (L2) or is a
smooth trend (S2). The seasonal variable remains significant in all models for all catchments (Table 3).

The next level of models involves L3 and S3 which include G, S and WL. This tests the significance
of WL and whether this explains part or all of G or S. In this case, WL is highly significant for C2
(p < 0.001). Moreover, WL is also significant for C1 and C3 if G is considered strictly linear (model
L3). This suggests that the WL explains the non-linear variation that in model S1 was captured in G.
However, models L3 and S3 for C1 and C3, respectively, explain less of the variation in the data
(adjusted r2). This indicates that WL is lesser explaining variable compared to FC in model L2 and S2
(Table 3). In contrast for C2, models L3 and S3 explain more variation than models L2 and S2.

The last set of models (L4 and S4) aims to explain TRR as a function of all variables (G, S, FC, and
WL). These models indicate a mixture of variables might explain TRR, and this differs by catchment
(Table 3). For C1, models S4 and L4 explain the highest percentage of the variation (22.2% for L4 and
21.4% for S4). The results indicate that FC is highly significant (p < 0.001) together with S, in model
S4. However, model L4 explains more of the variation in the data and indicates that additional
non-linearity in the data could be explained by WL, even though the significance of this variable
is lower (p = 0.05). For catchment C2, model L4 explains exactly the same amount of variation as
model L3, while S4 explains the largest amount of variation (13.4% for L3 and L4 and 14.9% for S4).
The results of the variables for L4 and S4 suggests that WL is again highly significant (p < 0.001), and
the effect of FC is very small (only significant at p < 0.1 in S4). For catchment C3, the results are quite
complex, but once again models S4 and L4 explain the highest amount of the variation (26.9% for L4
and 29.5% for S4). In this case, the variable G is still highly significant, both as a linear trend and a
smooth trend. This suggests there is some further global trend in the data which we cannot yet explain,
for example due to a different land use change or possibly a global climate trend. For L4 FC is highly
significant (p < 0.001) capturing non-linear effects in the data, not captured by S. However, WL is not
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significant at p = 0.1. In contrast, in model S4, which explains the highest amount of the variation in
the data, FC is only significant at p < 0.1).

The upper panel of Figure 7a–d shows the smooth terms of the S4 model for catchment C1. As can
be seen in Table 3, s(S) and s(FC) are highly significant (p < 0.001). Looking at the behavior, s(S)
has a smooth trend with a peak during the winter, indicating a decrease in the streamflow. Visually,
s(FC) appears directly proportional to FC in Figure 2, showing first an increase in the effect of FC,
leading to a decrease in streamflow once FC is greater than 6%. Figure 7e–h highlights the smooth
terms for catchment C2. Here, s(WL) is highly significant (p < 0.001). The variables s(S) (p < 0.05)
ands(FC) (p < 0.1) also explain variation in TRR but to a lesser degree (Table 3). The variables s(S)
and s(FC) visually follow a similar pattern as in C1, but the large confidence intervals around s(FC)
show the lack of predictive power of this variable. In contrast, s(WL) peaks at a maximum value
around WL = 2000 m3/year/km2 suggests a reduction in the streamflow. For higher values of
WL the streamflow reduction decreases, but the uncertainty increases (wider confidence intervals).
This will be further discussed in the discussion. In Figure 7i–l the response curves for C3 indicate
the non-significance of WL (Figure 7l) and the only slight significance for FC (indicated by the wide
confidence intervals in Figure 7k). The direction of the s(FC) variable might seem counter-intuitive
as this suggest stream flow increases with FC. However, the overall curve is around 0 (no change in
mean TRR with FC) and the confidence intervals overlap 0. Overall, this suggests no change in TRR
(and therefore streamflow) with FC in C3. The seasonal and global variables at C3 (Figure 7i,j) indicate
the same trends as in the S1 model, which were discussed earlier.

Figure 7. Smooth terms (continuous black lines) and standard error bounds (dashed lines) of S4 model
(TRR = s(G) + s(S) + s(FC) + s(WL)) for C1 (a–c), C2 (e–g) and C3 (i–k) catchments.
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4.3. Effect of Land Use Change and Water Licenses on Streamflow

In Figure 8 the effect of removing the average trends from the streamflow is demonstrated
This allows visualizing the effect of the specific land use change. For C1, the effect of removing the
(significant at p < 0.001) effect of FC, results in a substantial increase in the flow frequency curve
across the full flow spectrum. The effect of WL was not significant in C1 and, therefore, removing
this effect from the model results in almost no change in the flow frequency curve. The effect of WL,
while significant (at p < 0.001) is only minimal in C2, as indicated in the only minor change in the flow
duration curve if this variable is removed from the model. The effect of FC was only just significant
(p < 0.1) in C2 and therefore the effect of removing this from the model is much smaller than in C1.
In C3, removal of the FC variable suggests a decrease in the flow duration curve, but as indicated
earlier, this result can probably be explained by the low certainty of the s(FC) trend variable.

Figure 8. Effect of land use change and water licenses in Flow Duration Curves of Santa Lucía at Paso
Pache (a), Fray Marcos (b), and Paso de los Troncos (c).

5. Discussion

This study demonstrates GAMM can be used to test trend hypotheses in a systematic matter
based on the assumption that a rainfall-runoff model can remove variation in the data due to climate
forcing. This follows the suggestions by Serinaldi et al. [25] on how to best analyse trends in data.

5.1. Seasonal and Global Trends in the Observed Runoff (Aim 1)

The significance of the seasonality variable in all the models is surprising, particularly since the
trend in seasonality is not the same across the different catchment sizes (C1–C3 in Figure 7). The general
assumption is that the rainfall-runoff model would remove the majority of the seasonality as it includes
a measure of evapotranspiration which is strongly seasonal. However, what we are observing in the
residuals is a significant seasonal trend in all the catchments. This can be explained by the fact that
Santa Lucia catchment (at the Paso Pache, C1) has significant agricultural activities and this includes
grain crops or other seasonal cropping routines. In contrast, catchments C2 and C3 are dominated
by grassland and forest, which have typical radiation driven water requirements [36] . GR4J, as a
rainfall-runoff model, does not include a “crop growth” routine, so it cannot capture the seasonal
variation in evapotranspiration resulting from a growing grain crop [37]. As the land use activities
differ within the catchment (Figure 1b) and physiography of the catchment varies (Figure 1a) this
could result in different seasonal responses in the residuals [37].

5.2. Identifying the Effect of Exogenous Trends (Forest Cover and Water License, Aim 2)

Overall, the results suggest that in the largest catchment, the impact on the streamflow of the
change in forest cover is the greatest, and it has decreased the streamflow across all parts of the flow
frequency curve (Table 3 and Figure 8). In contrast, upstream in the smaller catchments, the effect is
essentially unobservable (Figure 7), despite, on a percentage area basis, the forest cover being greater
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and the change more rapid (Figure 2a). This seems in contrast to Oudin et al. [38] who indicated that
for smaller catchments the impact of land cover was greater in model performance.

The spatial arrangement of the forest cover, depending on where in the catchment the change
in forest cover takes place, there could affect the flow in different ways, as is the case with nutrient
losses [39]. This depends on what fraction of the actual flow is generated in the areas that are covered
by forest, and how much buffering occurs within the catchment [40], and this might differ by sub
catchment. For example, forest on more clayey soil in the lower catchment might impact streamflow
more than forest on sandy soils in the upper catchment. There is additionally the effect of catchment
size, 10% of forest cover on C1 (4896 km2) is in fact a larger total area in km2 than 20% of C3 (687 km2)
and therefore this could have a large effect on the resulting streamflow. Other explanation could be
differences in the hydrological response by forest type [6]. We estimated total forest cover, however in
C1, the forest cover is mainly eucalyptus (grandis, dunnii, globulus), however in C2 and C3 the forest
type could consist more of native forest and less eucalyptus [41].

The effect of the increased number of water licenses being provided in the catchment seems not
very large (Figures 7 and 8) although it is significant for the middle-sized catchment. This might be
because we don’t know if users supplied with a licence actually have build water intakes, as this
information is not available. In addition, the increase in provided water licenses is very recent, with a
strong increase in the water licenses mainly occurring after 2010 (Figure 2b). This is particularly the
case for C1. It is possible that the provided water licences have not yet fully affected the streamflow,
as they might not be fully exploited. However this might happen in the future and the trends indicate
that this will impact streamflow.

5.3. Further Considerations

In Figure 8, we demonstrate the mean effect of landuse change on the streamflow as a result of
our GAMM analysis. In this analysis we ignore two factors. The first is the uncertainty in the GAMM
analysis as indicated by the 95% confidence intervals in Figure 7. The predicted residuals are the mean
response and we have not attempted to also predict the variance of the response. This means that
the effect of removing the landuse variable can overestimate to actual effect. The second is based on
the assumption that simulating the catchment without the landcover change (without an increase in
forest cover) does not change the fit (and residuals) of the GR4J model. As a result, we can perform the
analysis in Figure 8. However, it is likely that there would be a difference, as the calibration of a model
would be impacted by the variance in the data and the variance in the streamflow would be impacted
by the change in land cover [37].

6. Conclusions

This paper demonstrates a data-based approach that uses the combination of a rainfall-runoff
model and the analysis of the residuals using GAMM to identify effects of land use change on
streamflow. This methodology was demonstrated in three nested catchments related to the main water
supply catchment for Montevideo (Uruguay). The analysis identified that an observed increase in
forest cover significantly explained part of the variation in streamflow at the gauge draining the overall
catchment. This suggested that forest cover increases were related to streamflow decreases. However,
forest cover was not a significant explaining variable at the upstream gauges, despite on a % basis
larger changes in cover. In addition, an increased number of water licenses appeared to have a weak
effect on the streamflow at the middle gauge with no effect at the other gauges. Overall, the approach
demonstrates that after removal of the “average” climate forcing effect using a rainfall-runoff model,
GAMM can be used to systematically test the impact of changes in land cover on streamflow. This will
also allow identifying any long term (global) or additional seasonal trends in the streamflow.

Author Contributions: For this work R.N. and R.W.V. designed and performed the experiments; R.N. analysed
the data; R.N. and J.A. contribute collected data; R.N. and R.W.V. wrote the manuscript; J.A. and A.G. contribute
to the review of the paper.



Water 2019, 11, 1433 14 of 15

Funding: Instituto Nacional de Investigacion Agropecuaria, Uruguay: FPTA-341.

Acknowledgments: This paper is an output of the INIA-IRI-the University of Sydney project FPTA-341, and is
funded by The National Institute of Agricultural Research of Uruguay (http://www.inia.uy/).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gleick, P.H. Global Freshwater Resources: Soft-Path Solutions for the 21st Century. Science 2003,
302, 1524–1528.[CrossRef] [PubMed]

2. Aparicio, J.; Lafragua, J.; Lopez, A.; Mejia, R.; Aguilar, E.; Mejía, M. Water Resources Assessment: Integral Water
Balance in Basins, phi-vii ed.; Number 14 in Technical Document; UNESCO Office Montevideo and Regional
Bureau for Science in Latin America and the Caribbean: Montevideo, Uruguay, 2008.

3. Hölzel, H.; Diekkrüger, B. Predicting the impact of linear landscape elements on surface runoff, soil erosion,
and sedimentation in the Wahnbach catchment, Germany. Hydrol. Process. 2012, 26, 1642–1654. [CrossRef]

4. Ren, L.; Wang, M.; Li, C.; Zhang, W. Impacts of human activity on river runoff in the northern area of China.
J. Hydrol. 2002, 261, 204–217. [CrossRef]

5. Gao, Z.; Zhang, L.; Zhang, X.; Cheng, L.; Potter, N.; Cowan, T.; Cai, W. Long-term streamflow trends in the
middle reaches of the Yellow River Basin: Detecting drivers of change: Streamflow Trends in the Middle
Reach of the Yellow River Basin. Hydrol. Process. 2016, 30, 1315–1329. [CrossRef]

6. Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on
hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest
type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [CrossRef]

7. Yang, L.; Feng, Q.; Yin, Z.; Wen, X.; Si, J.; Li, C.; Deo, R.C. Identifying separate impacts of climate and land
use/cover change on hydrological processes in upper stream of Heihe River, Northwest China. Hydrol. Process.
2017, 31, 1100–1112. [CrossRef]

8. Mekonnen, D.F.; Duan, Z.; Rientjes, T.; Disse, M. Analysis of combined and isolated effects of land-use and
land-cover changes and climate change on the upper Blue Nile River basin’s streamflow. Hydrol. Earth
Syst. Sci. 2018, 22, 6187–6207. [CrossRef]

9. Silveira, L.; Gamazo, P.; Alonso, J.; Martínez, L. Effects of afforestation on groundwater recharge and water
budgets in the western region of Uruguay. Hydrol. Process. 2016, 30, 3596–3608. [CrossRef]

10. Silveira, L.; Alonso, J. Runoff modifications due to the conversion of natural grasslands to forests in a large
basin in Uruguay. Hydrol. Process. 2009, 23, 320–329. [CrossRef]

11. Berri, G.J.; Ghietto, M.A.; García, N.O. The Influence of ENSO in the Flows of the Upper Paraná River of
South America over the Past 100 Years. J. Hydrometeorol. 2002, 3, 57–65. [CrossRef]

12. Camilloni, I.A.; Barros, V.R. Extreme discharge events in the Paraná River and their climate forcing. J. Hydrol.
2003, 278, 94–106. [CrossRef]

13. Krepper, C.M.; García, N.O.; Jones, P.D. Interannual variability in the Uruguay river basin. Int. J. Climatol.
2003, 23, 103–115. [CrossRef]

14. Kendall, M.G.; Gibbons, J.D. Rank Correlation Methods, 5th ed.; Arnold, E., Ed.; Oxford University Press:
London, UK; New York, NY, USA, 1990.

15. Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [CrossRef]
16. Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. Appl. Stat. 1979, 28, 126. [CrossRef]
17. Burn, D.H.; Hag Elnur, M.A. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122.

[CrossRef]
18. Tramblay, Y.; El Adlouni, S.; Servat, E. Trends and variability in extreme precipitation indices over Maghreb

countries. Nat. Hazards Earth Syst. Sci. 2013, 13, 3235–3248. [CrossRef]
19. Villarini, G.; Smith, J.A.; Serinaldi, F.; Ntelekos, A.A. Analyses of seasonal and annual maximum daily

discharge records for central Europe. J. Hydrol. 2011, 399, 299–312. [CrossRef]
20. Zeng, S.; Xia, J.; Du, H. Separating the effects of climate change and human activities on runoff over different

time scales in the Zhang River basin. Stoch. Environ. Res. Risk Assess. 2014, 28, 401–413. [CrossRef]
21. Koutsoyiannis, D. Nonstationarity versus scaling in hydrology. J. Hydrol. 2006, 324, 239–254. [CrossRef]
22. Simpson, G.L. Modelling palaeoecological time series using generalized additive models. bioRxiv 2018.

[CrossRef]

http://www.inia.uy/
http://dx.doi.org/10.1126/science.1089967
http://www.ncbi.nlm.nih.gov/pubmed/14645837
http://dx.doi.org/10.1002/hyp.8282
http://dx.doi.org/10.1016/S0022-1694(02)00008-2
http://dx.doi.org/10.1002/hyp.10704
http://dx.doi.org/10.1016/j.jhydrol.2016.12.040
http://dx.doi.org/10.1002/hyp.11098
http://dx.doi.org/10.5194/hess-22-6187-2018
http://dx.doi.org/10.1002/hyp.10952
http://dx.doi.org/10.1002/hyp.7156
http://dx.doi.org/10.1175/1525-7541(2002)003<0057:TIOEIT>2.0.CO;2
http://dx.doi.org/10.1016/S0022-1694(03)00133-1
http://dx.doi.org/10.1002/joc.853
http://dx.doi.org/10.2307/1907187
http://dx.doi.org/10.2307/2346729
http://dx.doi.org/10.1016/S0022-1694(01)00514-5
http://dx.doi.org/10.5194/nhess-13-3235-2013
http://dx.doi.org/10.1016/j.jhydrol.2011.01.007
http://dx.doi.org/10.1007/s00477-013-0760-8
http://dx.doi.org/10.1016/j.jhydrol.2005.09.022
http://dx.doi.org/10.1101/322248


Water 2019, 11, 1433 15 of 15

23. Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman & Hall/CRC Texts in
Statistical Science; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2017.

24. Wang, Q.; Liu, R.; Men, C.; Guo, L.; Miao, Y. Effects of dynamic land use inputs on improvement of SWAT
model performance and uncertainty analysis of outputs. J. Hydrol. 2018, 563, 874–886. [CrossRef]

25. Serinaldi, F.; Kilsby, C.G.; Lombardo, F. Untenable nonstationarity: An assessment of the fitness for purpose
of trend tests in hydrology. Adv. Water Resour. 2018, 111, 132–155. [CrossRef]

26. Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation.
J. Hydrol. 2003, 279, 275–289. [CrossRef]

27. Amoussou, E.; Tramblay, Y.; Totin, H.S.; Mahé, G.; Camberlin, P. Dynamique et modélisation des crues dans
le bassin du Mono à Nangbéto (Togo/Bénin). Hydrolog. Sci. J. 2014, 59, 2060–2071. [CrossRef]

28. Arnaud, P.; Lavabre, J.; Fouchier, C.; Diss, S.; Javelle, P. Sensitivity of hydrological models to uncertainty in
rainfall input. Hydrolog. Sci. J. 2011, 56, 397–410. [CrossRef]

29. Santos, L.; Thirel, G.; Perrin, C. Continuous state-space representation of a bucket-type rainfall-runoff model:
A case study with the GR4 model using state-space GR4 (version 1.0). Geosci. Model. Dev. 2018, 11, 1591–1605.
[CrossRef]

30. Coron, L.; Thirel, G.; Delaigue, O.; Perrin, C.; Andréassian, V. The suite of lumped GR hydrological models in
an R package. Environ. Model. Softw. 2017, 94, 166–171. [CrossRef]

31. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2018.

32. Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-Temporal Interpolation using gstat. RFID J. 2016, 8, 204–218.
[CrossRef]

33. Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [CrossRef]
34. Andrews, F.; Croke, B.; Jakeman, A. An open software environment for hydrological model assessment and

development. Environ. Model. Softw. 2011, 26, 1171–1185. [CrossRef]
35. Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.;

Newham, L.T.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ.
Model. Softw. 2013, 40, 1–20. [CrossRef]

36. Bos, M.G.; Kselik, R.; Allen, R.; Molden, D. Water Requirements for Irrigation and the Environment; Springer:
Dordrecht, The Netherlands, 2009. [CrossRef]

37. Schilling, K.E.; Jha, M.K.; Zhang, Y.K.; Gassman, P.W.; Wolter, C.F. Impact of land use and land cover
change on the water balance of a large agricultural watershed: Historical effects and future directions.
Water Resour. Res. 2008, 44. [CrossRef]

38. Oudin, L.; Andréassian, V.; Lerat, J.; Michel, C. Has land cover a significant impact on mean annual
streamflow? An international assessment using 1508 catchments. J. Hydrol. 2008, 357, 303–316. [CrossRef]

39. King, R.S.; Baker, M.E.; Whigham, D.F.; Weller, D.E.; Jordan, T.E.; Kazyak, P.F.; Hurd, M.K. Spatial
considerations for linking watershed land cover to ecological indicators in streams. Ecol. Appl. 2005,
15, 137–153. [CrossRef]

40. Guzha, A.; Rufino, M.; Okoth, S.; Jacobs, S.; Nóbrega, R. Impacts of land use and land cover change on surface
runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [CrossRef]

41. MGAP. Cartografía Forestal 2018; Dirección General Forestal: Montevideo, Uruguay, 2018.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2018.06.063
http://dx.doi.org/10.1016/j.advwatres.2017.10.015
http://dx.doi.org/10.1016/S0022-1694(03)00225-7
http://dx.doi.org/10.1080/02626667.2013.871015
http://dx.doi.org/10.1080/02626667.2011.563742
http://dx.doi.org/10.5194/gmd-11-1591-2018
http://dx.doi.org/10.1016/j.envsoft.2017.05.002
http://dx.doi.org/10.32614/RJ-2016-014
http://dx.doi.org/10.1016/j.cageo.2004.03.012
http://dx.doi.org/10.1016/j.envsoft.2011.04.006
http://dx.doi.org/10.1016/j.envsoft.2012.09.011
http://dx.doi.org/10.1007/978-1-4020-8948-0
http://dx.doi.org/10.1029/2007WR006644
http://dx.doi.org/10.1016/j.jhydrol.2008.05.021
http://dx.doi.org/10.1890/04-0481
http://dx.doi.org/10.1016/j.ejrh.2017.11.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Study Area and Dataset
	Methodology
	Rainfall-Runoff Simulation
	Trend Simulation of Runoff Residuals
	Quantifying the Effect of Land Use Change and Water Licenses on Streamflow

	Results
	Rainfall-Runoff Model Performance
	GAMM Analysis of Runoff Residuals
	Effect of Land Use Change and Water Licenses on Streamflow

	Discussion
	Seasonal and Global Trends in the Observed Runoff (Aim 1)
	Identifying the Effect of Exogenous Trends (Forest Cover and Water License, Aim 2)
	Further Considerations

	Conclusions
	References

