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Abstract 
 
Reliability of predictions from single-step genomic BLUP (ssGBLUP) can be calculated by inversion, 
but that is not feasible for large data sets. Two proposed approximations of reliability are based on 
decomposition of a function of reliability into contributions from records, pedigree, and genotypes. 
The first approximation involves inversion of a matrix that contains inverses of the genomic 
relationship matrix (G) and the pedigree relationship matrix for genotyped animals (A22). The second 
approximation involves only the diagonal elements of those inverses. The approximations were tested 
with a simulated data set. The correlations between exact and approximated contributions due to 
genomic information were 0.92 for the first approximation and 0.56 for the second approximation; 
contributions were inflated 60 and 260%, respectively. The respective correlations for reliabilities 
were 0.98 and 0.72. After correction for inflation, those correlations increased to 0.99 and 0.89. 
Approximations of reliabilities of predictions by ssGBLUP are accurate and computationally feasible. 
A critical part of the approximations is quality control of SNP information and proper scaling of G. 
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Introduction 
 
A single-step genomic BLUP (ssGBLUP) is a 
modification of BLUP to use genomic 
information. In ssGBLUP, the pedigree-based 
relationship matrix (A) and a relationship 
matrix based on genomic information (G) are 
combined into a single matrix H (Legarra et 
al., 2009). The inverse of H has a simple form 
and can substitute for the inverse of A in 
existing software (Aguilar et al., 2010). 
Compared to multistep methods (VanRaden, 
2008)), ssGBLUP is simpler and applicable to 
complicated models. The ssGBLUP has been 
successfully used for chickens (Chen et al., 
2011b), pigs (Forni et al., 2010), and dairy 
cattle (Aguilar et al., 2010; Tsuruta et al., 
2011; Aguilar et al., 2011b). The computing 
limit of ssGBLUP is currently up to about 
100,000 genotypes of progeny-tested animals 
(Aguilar et al., 2011a) with no limit on the 
number of animals or traits. Recent 
developments (Legarra et al., 2011; Ducrocq 
and Legarra, 2011) may allow ssGBLUP to be 
used with an unlimited number of genotypes.  

 
In a genetic evaluation, computing 

reliability of EBV is of interest. When the 

system of equations is small, reliability can be 
computed by inversion. When the system of 
equations is large, inversion is impossible and 
reliability needs to be approximated. Several 
approximations for animal models exist for 
non-genomic evaluations. An approximation 
by Misztal and Wiggans (1998) that is easy to 
compute involves the effective number of 
records and a sum of contributions to an 
animal from its parents and progeny. This 
approximation is iterative although a non-
iterative modification exists (VanRaden and 
Wiggans, 1991). The approximation of Misztal 
and Wiggans (1998) was extended to 
repeatability (Wiggans et al., 1988; Misztal et 
al., 1993), multiple-trait including  maternal 
effect (Strabel et al., 2001), and random 
regression (Sánchez et al., 2008) models. The 
advantage of approximation is simplicity and 
computing ease. 
 

An approximation of reliability when 
genomic information is available needs to 
fulfill a few obvious conditions. First, more 
genotypes result in equal or higher reliability. 
Second, a young genotyped animal creates no 
additional information for other animals. 
Third, the extra information from genomics is 
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small or none for a young animal with 
ancestors that are not genotyped. Fourth, no 
extra reliability is gained for an animal from 
different lines or breeds.  

 
The purpose of this study was to extend the 

algorithm of Misztal and Wiggans (1988) to 
ssGBLUP.  
 
 
Data 
 
Data were simulated using QMSim (Sargolzaei 
and Schenkel, 2009) for an additive trait with 
heritability of 0.5, two chromosomes, and 60 
QTL. Performance was simulated for 15,800 
individuals in five generations, and 1,500 
individuals of the last three generations were 
genotyped.  
 
 
Derivations 
 
Reliability of animal i (reli) can be 
approximated as 1 – [α/(α + di)], where α is 
the variance ratio and di   is the amount of 
information for animal i in units of effective 
number of records (Misztal and Wiggans, 
1988). The information can be calculated by 
inversion of the left-hand side (LHS) of the 
mixed model equations as LHSii

uu  = 1/(α + di), 
where u is ?. Then di can be partitioned as 

+ +r p g
i i id d d , where r

id  is contribution from 
records (phenotypes), p

id  is contribution from 
pedigrees, and g

id  is contribution from 
genomic information. With pedigree 
information, contributions to an animal are 
from progeny and parents only. With genomic 
information, contributions are from all animals 
with genomic information. 
 

For simplicity, assume a single-trait mixed 
model with the additive animal effect as the 
only random effect. When relationships are 
known, LHS is 

 

1 ,
−

′ ′ 
 ′ ′ + 

X X X Z

Z X Z Z Aα  
 
and the diagonal elements of the inverse of 
LHS for animal i can be presented as LHSii

uu  =  

1 / ( ).+ +r p
i id dα  If { }=D dr r

i  and { }=D dp p
i  

are known, the formula can be simplified to 
LHSii

uu  = 1[( ) ]−+ +D D Iαr p
i i ii   

 
or approximated as  
 
LHSii

uu  ≈ 1 1[( ) ]− −+D Aαr
i ii . 

 
Misztal and Wiggans (1988) estimated the 

contributions from relationships separately for 
each relationship in an iterative formula. Non-
matrix formulas for the contributions were 
derived by VanRaden and Wiggans (1991).  
 

When genomic information is available, 
 

1
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and the diagonal elements of the inverse of 
LHS for animal i are LHSii

uu  = 
1 / ( ).+ + +r p g

i i id d dα  If Dr and Dp are known, 
the formula can be approximated as 
 

1 1 1 1
22LHS {[ ( ) ] } .− − − −≈ + + + −D D I G Aαii r p

guu i i ii

 
In this equation, G accounts for genomic 
information, and A22 accounts for an 
adjustment to prevent double counting. 
 

The last equation can be the basis for the 
following algorithm (called Approx1) to 
approximate reliabilities with genomic 
information: 
  
1. Approximate reliabilities with an algorithm 

that ignores genomic information. 
 

2. Convert those reliabilities to effective 
number of records for genotyped animals 
only:  
di = α[1/reli-1)]. 

 
3. Calculate the inverse: 

1 1 1 1
22[ ( ) ] .− − − −= + + −Q D I G Aα  
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4. Calculate genomic reliabilities:  
ri = 1 – αqii. 
 

5. Possibly adjust reliabilities of non-
genotyped animals if those are functions of 
reliabilities of genotyped animals. 

 
 
Algorithm based on diagonal elements 
 
When off-diagonals of some matrices are 
ignored, the formula for Q can be simplified to 
 

1 1 1 1
22{ [ diag( )] } .− − − −= + + −Q D I G Aα  

 
This algorithm (called Approx2) is based 

on findings that diagonal information in G–1 
contains the information in A–1 plus genomic 
information.  
 
 
Analyses 
 
Total information per animal was calculated 
using an animal model with pedigree 
relationship only and using ssGBLUP. 
Contributions due to genomics were calculated 
as differences in information from the two 
analyses. Approximations used the non-
genomic information from the pedigree-only 
analysis. Matrix G was constructed using 
current allele frequencies and subsequently 
rescaled so that means of diagonal and off-
diagonal elements were identical to those of 
A22 (Chen et al., 2011a; Vitezica et al., 2011). 
Initially reliabilities were calculated from the 
sum of all contributions. For approximations 
only, reliabilities were calculated with 
genomic contributions regressed to have a 
mean equal to that for exact contributions.  
 
 
Results 
 
Table 1 shows statistics for exact and 
approximated genomic contributions as well as 
correlations between exact and approximated 
contributions. Correlation with the exact 
method was 0.92 for Approx1 and 0.56 for 
Approx2. Both contributions were inflated: by 
60%   for  Approx1  and  by  over  3  times  for  
 
 

Approx2. Inflation resulted from ignoring off-
diagonal elements in X′X, Z′Z, and A−1.  
 

Table 2 shows statistics for exact and 
approximated reliabilities as well as 
correlations between exact and approximated 
reliabilities. Correlation with the exact method 
was 0.98 for Approx1 and 0.72 for Approx2. 
Both contributions were inflated. After 
regressing genomic contributions (Table 3), 
reliabilities were no longer inflated, and 
correlation with the exact method increased to 
0.99 for Approx1 and 0.89 for Approx2. In 
practice, the coefficient of regression is 
unknown and has to be derived experimentally, 
e.g., to match realized reliabilities.  
 

Approx1 is computationally feasible if 
ssGBLUP is feasible because ssGBLUP 
requires the inverses of G and A22 to be 
computable. Approx2, a simplification of 
Approx1, generally offers little benefit over 
Approx1 except when diagonal elements of the 
inverses of G and A22 can be computed at a 
low cost.  

Table 1. Statistics for genomic contributions from 
three methods to estimate reliability. 

Method Mean Range 
Correlation with 

exact contribution 
Exact1 2.4 ± 0.4 1.7–4.7 — 
Approx1 3.9 ± 0.6 2.9–8.3 0.92 
Approx2 8.6 ± 4.2 4.5–62 0.56 
1ssGBLUP. 
 
Table 2. Statistics for reliabilities from three 
methods to estimate reliability. 

Method Mean, % Range, % 
Correlation with 

exact contribution 
Exact1 81 ± 2 77–90 — 
Approx1 85 ± 2 83–93 0.98 
Approx2 91 ± 2 86–98 0.72 
1ssGBLUP. 
 
Table 3. Statistics for reliabilities from three 
methods to estimate reliability after rescaling 
genomic contributions. 

Method Mean, % Range, % 
Correlation with 

exact contribution 
Exact1 81 ± 2 77–90 — 
Approx1 81 ± 2 78–92 0.99 
Approx2 81 ± 4 75–96 0.89 
1ssGBLUP. 
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For Approx1 and Approx2, reliability 
calculated by inversion is assumed to reflect 
real reliability. This was confirmed by Hayes 
et al. (2009) in a simulation study. However, 
predicted reliabilities were inflated compared 
with realized reliabilities in a study by 
VanRaden et al. (2009). Several explanations 
exist for the inflation. First, inflation could 
result from several approximations and 
assumptions inherent in multiple-step 
procedures. Second, genetic relationships fade 
over generations under selection (Muir, 2007), 
and thus contributions from older generations 
may be inflated. Third, effects of major genes 
(if they exist) may not be fully accounted for 
by the method. Fourth, the analysis model may 
be deficient, e.g., by ignoring selection, 
censoring, or preferential treatment. For 
example, the genetic parameters for several 
chicken traits in two lines were different 
between complete data sets or genotyped 
subsets in chicken (Chen et al., 2011b), and 
origins of those differences were difficult to 
explain.  Differences among predicted and 
realized reliabilities were not obvious before 
the era of genomic selection as interest in 
realized reliabilities was limited. Probably the 
best way to tackle the issue of inflated 

predicted reliabilities is by research on causes 
of such inflation, both with and without 
genomic information.  

 
Approx1 and Approx2 are based on 

differences between G and A22. Chen et al. 
(2011a) found that number of SNP and 
assumed allele frequencies affected statistics of 
G and G−1. They recommended that G be 
constructed with current allele frequencies and 
then rescaled to match statistics of A22. They 
also found that decreasing the number of SNP 
when constructing G inflated G (although 
inflation was small when number of SNP was 
>20,000). In populations with multiple lines 
with different allele frequencies (e.g., Simeone 
et al., 2011), G needs to be rescaled for 
different lines to avoid less accurate 
approximations of accuracy (e.g., Harris and 
Johnson, 2010).  Wang and Misztal (2011) 
found that for properly scaled G, the SD of a 
difference between elements of G and A22 is < 
0.04. Similar quantity found by Hill and Weir 
(2011). Larger differences of up to 1.0 are due 
genotyping mistakes, pedigree mistakes, 
incomplete pedigree and mixing of lines. Such 
differences can lead to inflated approximations 
of reliability for selected animals.  
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Figures 1 and 2 show exact and 
approximated genomic contributions after 
scaling. Most of the Approx1 contributions are 
similar, but some are inflated. For Approx2, 
the fit for most animals is not as good, and 
inflation for selected animals is larger. Reasons 
for inflation for some animals will be studied 
subsequently. 

 
Figures 3 and 4 show exact and 

approximated reliabilities after scaling. The fit 
for Approx1 is very good, whereas that for 
Approx2 is not as good. The fit for reliabilities 
is better than for genomic contributions 
because of an upper bound of 1 and the 
stabilizing effect of contributions from records 
and pedigrees. 

 
 

Conclusions 
 
Two algorithms to approximate reliabilities in 
ssGBLUP were presented. The first algorithm 
was relatively accurate and inexpensive for 
<30,000 genotypes. It required some heuristics 
to regress inflated genomic contributions. 
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Figure 1. Exact (y axis) and approximated (x axis) 
genomic contributions after scaling for Approx1. 

 
 
 

Figure 2. Exact (y axis) and approximated (x axis) 
genomic contributions after scaling for Approx2. 

 

Figure 3. Exact (y axis) and approximated (x axis) 
genomic reliabilities after scaling for Approx1. 

 
 
 

Figure 4. Exact (y axis) and approximated (x axis) 
genomic reliabilities after scaling for Approx2. 
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