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Abstract 
 
The single step genomic methodology provides a unified framework to integrate phenotypic, pedigree 
and genomic information in the prediction of breeding values. Minimal modifications of current 
softwares are necessary in order to incorporate extra relationship matrices, however computing such 
matrices has a cubic cost. Recently, a system of equations relaxing the computing cost of creating the 
inverse of the genomic relationship matrix was presented, which creates an unsymmetric system of 
equations. Bi Conjugate Gradient Stabilized solvers (BiCGSTAB) were proposed to solve 
unsymmetric system of equations and also can be used with iteration on data programs, resulting in a 
good choice for solving large-scale genetic evaluations. Here we describe the implementation of a 
large genetic evaluation using unsymmetric solvers within the iteration on data framework. 
Comparison with the regular single-step methodology is presented and the effects of different 
preconditioners and data structures on the convergence pattern were studied. A large scale genetic 
evaluation was feasible, however required more rounds to get convergence compared with the regular 
single-step. More sophisticated preconditioners are necessary to improve the convergence for solving 
unsymmetric single-step genomic evaluations.  
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Introduction 
 
The Single Step GBLUP (SSGBLUP; Aguilar 
et al., 2010; Christensen et al., 2010) is an 
alternative to combine pedigree (for all 
individuals), marker and phenotype 
information in a coherent framework for 
genetic evaluations and marker effect 
estimation (Wang et al., 2012). 
 

This unified approach modifies the 
pedigree-based relationship matrix to include a 
genomic relationship matrix, and the resulting 
mixed model equations involve the regular 
inverse of the numerator relationship matrix, 
the inverse of the genomic relationship matrix 
and the inverse of the pedigree-based 
relationship matrix for genotyped individuals 
(Aguilar et al., 2010; Christensen et al., 2010).  
 

Adding such extra relationship matrices to 
current software for genetic evaluation and 
variance component estimation results in the 
application of genomic information in a broad 
kind of models and species (Misztal et al., 
2010).  

 
Although the computation of the inverses of 

such matrices has a cubic cost regarding the 
number of genotyped individuals, efficient 
methods were presented (Aguilar et al., 2011). 
Moreover, the use of methods that exploit 
GPU cards make such computations feasible 
for hundreds of thousands of genotyped 
individuals (Masuda et al., 2013; Coffey et al., 
2011).   
 

With the current implementation of 
genomic computations (Aguilar et al., 2011), 
SSGBLUP can support very large genotypes 
indirectly if the genotyped animals are 
decomposed into proven animals and an 
arbitrary number of young animals. In such a 
case, the initial computing includes only 
genotypes of proven animals. GEBV of these 
animals are subsequently converted to SNP 
effects (Wang et al., 2012), which in turn 
provide DGV for young animals. The resulted 
DGV may have to be blended with PA, but 
DGV≈GEBV when the number of proven 
animals is high (Su et al., 2012) 
   



INTERBULL BULLETIN NO. 47. Nantes, France, August 23 - 25, 2013 

 

223 

 

Recently, Legarra & Ducrocq (2012) 
suggested the use of an alternative system of 
equations to implement SSGBLUP, where 
there is no need of the inverse of such 
relationship matrices, however creates an 
unsymmetric system of equations which can 
deal with large data sets as those known in 
dairy cattle for some countries. These 
equations are, for the most general case 
(multiple-trait model, multiple correlated 
random effects as in random regression or 
maternal effects models) as follows:  

 
where G is a “genomic” relationship matrix 
(VanRaden, 2008), possibly after some 
“tuning” to refer to the same genetic base of 
the pedigree (Vitezica et al., 2011),  
 

 is the pedigree-based  

 
relationship matrix and is the genetic 
covariance across traits. 
 

The advantage of this formulation of the 
Mixed Model Equations for the SSGBLUP is 
that it does not require inversion of either G or 
A22, which was the case in Aguilar et al.  
(2010) and Christensen & Lund (2010). 
Further, for iteration on data methods, where 
matrix-vector products are need, neither 
construction of G or A22 is necessary because 
the matrix-vectors products involving A22 and 
G can be efficiently computed using Colleau 
(2002) for the first or the form 

 for the second for any x 
vector. 
 

Solve of the unsymmetric equations can be 
done by the iterative method BiCGSTAB (Van 
Der Vorst, 1992) as explained by Misztal et al. 
(2009) and Legarra & Ducrocq (2012). 
However these MME had not yet been tested 
for large data sets.  
 
 The objective of the present study was to 
implement the unsymmetric SSGBLUP and 
test in a large-scale genetic evaluation.  
 

Materials and Methods 
 
Data were US Holstein information for final 
score as used in Aguilar et al. (2010). A total 
of 10 466 066 records were available for 6 232 
548 cows. Pedigrees were available for 9 100 
106 animals. Genotypes for 6 508 bulls were 
generated using the Illumina BovineSNP50 
BeadChip (Illumina, San Diego, CA) and 
DNA from semen contributed by US and 
Canadian AI organizations to the Cooperative 
Dairy DNA Repository (Beltsville, MD); 
genotypes were provided by the Animal 
Improvement Programs Laboratory, 
Agricultural Research Service, USDA 
(Beltsville, MD). 
 

A preconditioned conjugate gradient 
algorithm using iteration on data program 
BLUP90IOD (Tsurura et al., 2001) from the 
BLUPF90 package (Misztal et al., 2002) was 
modified to solve the unsymmetric MME as in 
Legarra & Ducrocq (2012) by the BiCGSTAB 
method (Van der Vorst, 1992). The latter uses 
iteration of data and therefore has the ability to 
solve very large systems of equations. 
Multiplications products involving A22 and G 
were implemented using pre-computed G and 
A22 with optimized BLAS matrix-vector 
subroutines from Intel Math Kernel Library 
(MKL). A more memory-wise implementation 
would compute the matrix-vector products 
without explicit set up of matrices as described 
before. 
 
 Tests included the symmetric SSGBLUP as 
in Aguilar et al., (2010) and also the improved 
BiCGSTAB algorithm (BiCGSTAB(l)), 
proposed by Sleijpen & Fokkema (1993) for 
better convergence behavior. Also different 
preconditioners that account for the non-
symmetric system of equations were 
compared.  
 
 
Results & Discussion 
 
To monitor convergence the squared ratio of 
the norm of residual and right-hand side 
vectors was used, and the iterations were 
stopped when the criteria was below 10-12. All 
solvers converged to the same solutions. Table 
1 shows  statistics of estimated breeding values  
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(EBV) computed using the regular SSGLUP 
(PCG) or the unsymmetric solvers BiCGSTAB 
and BiCGSTAB(l). Correlations of EBV 
between methods were > 0.999. 
 
Table 1. Statistics of estimated breeding 
values for different solvers. 

 
Figure 1 shows the convergence for the 

regular SSGBLUP (PCG) and for the two 
unsymmetric solvers (BiCGSTAB and 
BICGSTAB(l)).  Unsymmetric solvers took 
more rounds to get convergence compared to 
the symmetric system using H-1. Although the 
BiCGSTAB(l) took fewer iterations, the 
number of matrix-vector multiplications of 
such system is twice that of BiCGSTAB so the 
total computing time for both unsymmetric 
solvers was very similar. 
 

 
Figure 1.  Convergence for different solvers. 
 

Conjugate gradient solvers are greatly 
affected by a preconditioner. Figure 2 shows 
the effect of using different preconditioners on 
convergence pattern. Using an unsymmetric 
preconditioner improves the convergence 
pattern and accelerates convergence. 

 
Figure 2.  Effect of preconditioner in 
unsymmetric solvers on convergence. 
 

A subset of the final score records was used 
to mimic a data structure with young sires 
without progeny information. Final scores 
records from 2005 through 2009 were 
removed, resulting in 2575 young sires. Figure 
3 shows the effect of the data structure on 
convergence. For both methods addition of 
young sires decreased convergence. Including 
genotypes of young sires directly in analyses is 
not essential because their EBV’s can be 
obtained from SNP solutions, as stated earlier.  
 

 
Figure 3.  Effect of data structure on 
convergence. 
 
 
Conclusions 
 
Large scale genetic evaluation using the 
unsymmetric equations for a single-step 
GBLUP that do not require inverses of 
genomic       relationship        matrices        was 
 
 
 
 
 

 PCG BiCGSTAB BiCSTAB(l) 
Minimum -6.1 -6.1 -6.1 
1st Quan.  3.0 3.2 3.0 
Median 4.5 4.7 4.5 
Mean 4.5 4.7 4.6 
3rd Quan. 6.2 6.4 6.2 
Maximun 11.9 12.1 11.9 
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 successfully implemented. The convergence 
of the unsymmetric solvers was slower than 
that of the regular equations, and was affected 
by the preconditioner and the data structure. A 
good understanding of convergence criterion 
and a more sophisticated preconditioner is 
necessary for the BiCGSTAB solvers for the 
unsymmetric SSGLUP.  
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