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Abstract 
 
The objectives of this study were to implement and evaluate the “Algorithm for proven and Young” 
(APY) for inversion of the genomic relationship matrix (G) in single-step genomic BLUP (ssGBLUP). 
Phenotypic data included 11,626,576 final scores on 7,093,380 US Holsteins and genotypes were 
available for 569,404 animals. Daughter deviations for young genotyped bulls with no classified 
daughters in 2009 but with at least 30 classified daughters in 2014 were computed using BLUP with 
all the phenotypes and pedigrees. Genomic predictions (GEBV) were obtained by ssGBLUP using 
phenotypes up to 2009.  We calculated the G inverse with APY based on genomic recursions on a 
subset of “base” animals. We tested several subsets including 9,406 bulls with at least 1 daughter, 
9,046 bulls and 1052 dams, 9,046 bulls and 7,422 classified cows, and random samples of 5,000, 
10,000, 15,000, 20,000, and 30,000 animals. Validation reliability was calculated as R2 with a linear 
regression of daughter deviations on GEBV for young genotyped bulls. The reliabilities were 0.39 
with 5,000 randomly chosen base-animals, 0.45 with base-animals including bulls and cows, and 0.44 
with the remaining subsets. Setting up the G inverse for all the genotypes with 10,000 base-animals 
took 1.3 hours and 57GB of memory. Genomic predictions with G inverse are accurate when the 
number of base animals is at least 10,000. Single-step genomic BLUP using the G inverse via APY is 
applicable to populations with a large number of genotyped animals. 
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Introduction 
 
Single-step genomic BLUP (ssGBLUP) is a 
tool for genomic evaluations with several 
advantages over multistep methods (Aguilar et 
al., 2010; VanRaden and Wright, 2013; 
Legarra et al., 2014). This approach needs the 
inverse of a dense, genomic relationship matrix 
(𝑮𝑮−1; VanRaden, 2008). Therefore, the 
number of genotyped animals can be a limiting 
factor in applying ssGBLUP to a population 
with a large number of genotyped animals. 

 
The “algorithm for proven and young 

animals” (APY; Misztal et al., 2014) provides 
a sparser 𝑮𝑮−1 (𝑮𝑮𝐴𝐴𝐴𝐴𝐴𝐴−1 ). With this algorithm, 
genotyped animals are divided into two 
groups: “base” and “non-base” animals. 
Computing  cost and storage size will decrease  

 
 

if many animals are defined as “non-base”. 
The 𝑮𝑮𝐴𝐴𝐴𝐴𝐴𝐴−1  with arbitrary 10,000 “base” animals 
provided similar genomic enhanced breeding 
values (GEBV) to genomic evaluations from 
𝑮𝑮−1 with less computing time and memory 
requirement (Fragomeni et al., 2015). 
Validation reliabilities of GEBV with 𝑮𝑮𝐴𝐴𝐴𝐴𝐴𝐴−1  in 
dairy populations have not been discussed. 
Also, an efficient implementation of APY with 
a large number of genotyped animals has not 
been presented. 

 
The objectives of this study were to develop 

an efficient implementation of 𝑮𝑮𝐴𝐴𝐴𝐴𝐴𝐴−1  and to 
validate genomic predictions for young 
genotyped bulls in final score for US 
Holsteins. We also showed validation 
reliabilities in genomic predictions in the US 
Jersey population. 
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Materials and Methods 
 
Computations 

 
We set up the 𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨−𝟏𝟏  using formulas shown by 
Fragomeni et al (2015): 
 
𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨−𝟏𝟏

= �
𝑮𝑮𝒃𝒃𝒃𝒃−𝟏𝟏 + 𝑮𝑮𝒃𝒃𝒃𝒃−𝟏𝟏𝑮𝑮𝒃𝒃𝒃𝒃𝑴𝑴𝒃𝒃𝒃𝒃

−𝟏𝟏𝑮𝑮𝒃𝒃𝒃𝒃′ 𝑮𝑮𝒃𝒃𝒃𝒃−𝟏𝟏 −𝑮𝑮𝒃𝒃𝒃𝒃−𝟏𝟏𝑮𝑮𝒃𝒃𝒃𝒃𝑴𝑴𝒃𝒃𝒃𝒃
−𝟏𝟏

−𝑴𝑴𝒃𝒃𝒃𝒃
−𝟏𝟏𝑮𝑮𝒃𝒃𝒃𝒃′ 𝑮𝑮𝒃𝒃𝒃𝒃−𝟏𝟏 𝑴𝑴𝒃𝒃𝒃𝒃

−𝟏𝟏 �

= �
𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝒃𝒃𝒃𝒃 𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝒃𝒃𝒃𝒃

𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝒃𝒃𝒃𝒃 𝑴𝑴𝒃𝒃𝒃𝒃
−𝟏𝟏 � 

 
and 

𝑴𝑴𝒃𝒃𝒃𝒃
−𝟏𝟏 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅{ 𝒅𝒅𝒅𝒅𝒅𝒅 − 𝒅𝒅𝒃𝒃𝒅𝒅′ 𝑮𝑮𝒃𝒃𝒃𝒃−𝟏𝟏𝒅𝒅𝒃𝒃𝒅𝒅 } 

 
where 𝑮𝑮 is a genomic relationship matrix, the 
subscript b refers to “base” animals, the 
subscript c refers to “non-base” animals, 𝒅𝒅𝒅𝒅𝒅𝒅 is 
diagonal elements in 𝑮𝑮 for “non-base” animal 
i,  and 𝒅𝒅𝒃𝒃𝒅𝒅 is the i-th column in 𝑮𝑮𝒃𝒃𝒃𝒃. The 
matrix 𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨−𝟏𝟏  was stored as a combination of 
matrices (𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝒃𝒃𝒃𝒃  and 𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝒃𝒃𝒃𝒃 ) and a vector (𝑴𝑴𝒃𝒃𝒃𝒃

−𝟏𝟏). 
 
We did not explicitly calculate an inverse of 

the numerator relationship matrix for 
genotyped animals (𝑨𝑨𝟐𝟐𝟐𝟐−𝟏𝟏). When mixed model 
equations are solved with preconditioned 
conjugate gradient (PCG), only a product of 
this inverse and a vector, say 𝒒𝒒, is required in 
each round. Strandén and Mänysaari (2014) 
showed: 

 
𝑨𝑨𝟐𝟐𝟐𝟐−𝟏𝟏𝒒𝒒 = [𝑨𝑨𝟐𝟐𝟐𝟐 − 𝑨𝑨𝟐𝟐𝟏𝟏�𝑨𝑨𝟏𝟏𝟏𝟏�−𝟏𝟏𝑨𝑨𝟏𝟏𝟐𝟐]𝒒𝒒, 

 
where 𝑨𝑨𝟏𝟏𝟏𝟏, 𝑨𝑨𝟐𝟐𝟏𝟏, and 𝑨𝑨𝟏𝟏𝟏𝟏 are sparse 
submatrices of 𝑨𝑨−𝟏𝟏. The product 𝑨𝑨𝟐𝟐𝟐𝟐−𝟏𝟏𝒒𝒒 was 
calculated with sparse submatrices. 

 
We used the BLUP90IOD2 program 

(http://nce.ads.uga.edu/wiki/BLUPmanual) to 
solve mixed model equations with the PCG 
algorithm. Dense matrix multiplications in 
computing 𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨−𝟏𝟏  were performed using a 
multi-threaded version of the Intel Math 
Kernel Library (Intel Corporation, Santa Clara, 
CA). All the analyses were performed on a 
computer running Linux (x86_64) with Intel 
Xeon CPU (3.0GHz) processors with 24 cores. 
 
 

Validation studies 
 
Data 

 
We show the description of data used in this 
study in Table 1. We used final score from 
Holstein cows classified up to March, 2014. 
Genotypes on 60,671 SNP markers were 
available for 569,404 animals (n). These data 
were referred as the full data set. A truncated 
data set used for validation contained 
phenotypes from cows classified in 2009 or 
earlier. 
 
Table 1. Numbers of phenotypes, recorded 
cows, pedigree animals, and genotypes in full 
and truncated data sets for Holsteins. 

 
Definitions of “base” animals 

 
We defined 8 “base” groups for Holsteins: 
genotyped bulls with at least 1 classified 
daughters up to 2009 (Base09K; N = 9,406), 
the bulls included in Base09K and their dams 
genotyped and classified up to 2009 
(Base10K; N = 10,458), the animals included 
in Base10K, and genotyped and classified 
cows born up to 2009 (Base17K; N = 16,828), 
and randomly sampled 5,000 (Rand05K), 
10,000 (Rand10K), 15,000 (Rand15K), 
20,000 (Rand20K), and 30,000 (Rand30K) 
animals from a group of 77,066 genotyped 
animals born in 2009 or earlier. The sampling 
was replicated 3 times. 
 

Models 
 
A single-trait ssGBLUP model was employed 
to predict GEBV with the linear animal model 
described by Tsuruta et al. (2002). The mixed 
model equations included the inverse of the 
realized relationship matrix (H): 

Data Number 
Full data set  
     Phenotypes 11,626,576 
     Recorded cows 7,093,380 
     Pedigrees 10,710,380 
     Genotypes 569,404 
Truncated data set  
     Phenotypes 10,671,898 
     Recorded cows 6,384,859 
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𝐇𝐇−1 = 𝐀𝐀−1 + �𝟎𝟎 𝟎𝟎
𝟎𝟎 τ𝐆𝐆APY−1 − 𝜔𝜔𝐀𝐀22−1

� 

 
where τ and ω are constants to reduce bias in 
GEBV (Misztal et al., 2010). We used τ = 1.0 
and ω = 0.9 in this study. 
 
 
Validation 

 
We defined the “predicted bulls” as young 
genotyped bulls which had no daughters 
classified in the truncated data but had at least 
30 daughters classified in the full data (N = 
2,948). 

 
Daughter deviations (VanRaden and 

Wiggans, 1991) for the predicted bulls 
(DD2014) were calculated from the full data 
set without genomic information.  Genomic 
predictions for the predicted bulls 
(GEBV2009) were calculated using the 
truncated data set. Parent average (PA2009) 
were also calculated without genomic 
information with the truncated data. 

 
A linear regression analysis was conducted 

for each combination of DD2014 with 
genomic predictions (or parent averages) for 
predicted bulls. The coefficient of 
determination (R2) and the regression 
coefficient (b1) of DD2014 on genomic 
predictions were calculated to assess validation 
reliability and bias, respectively. 
 
 
Results and Discussion 

 
Table 2 shows R2 and b1 of DD2014 on 
PA2014 and GEBV2009 from various 𝐆𝐆APY−𝟏𝟏  
for the predicted bulls. Genomic predictions 
always had greater R2 and b1 than PA2009. 
The R2 and b1 were almost consistent over the 
definitions of “base” animals. For randomly 
sampled “base” animals, R2 and b1 were very 
consistent over replicates. We needed 10,000 
or more base animals to achieve the highest R2. 
The validation reliabilities in ssGBLUP were 
greater than 0.40 reported by Tsuruta et al. 
(2013) for 1,851 young bulls in the US 
Holsteins with 39,741 genotyped animals. 
 

Table 2. Coefficient of determination (R2) and 
regression coefficient (b1) of DD2014 on 
PA2009 and GEBV2009 for predicted Holstein 
bulls with at least 30 daughters classified in 
2014; average R2 and b1 over 3 replicates are 
shown for random sampled “base” animals. 
 “base”  
Prediction animals R2 b1 
PA2009  0.25 0.63 
GEBV2009 Base09K 0.44 0.82 
 Base10K 0.45 0.82 
 Base17K 0.45 0.83 
 Rand05K 0.39 0.83 
 Rand10K 0.44 0.83 
 Rand15K 0.44 0.83 
 Rand20K 0.44 0.82 
 Rand30K 0.44 0.82 
 

Table 3 shows brief results from validation 
studies for 305-d milk yield in the US Jersey 
population (see our presentation for details at 
http://www.interbull.org/ib/orlando_presentati
ons). Single-step GBLUP resulted in very 
similar R2 and b1 in genomic predictions 
compared to the multistep method. We 
observed almost no differences in R2 and b1 
between  𝐆𝐆−1 and 𝐆𝐆APY−1  in ssGBLUP. 
 
Table 3. Coefficient of determination (R2) and 
regression coefficient (b1) of DD2014 on 
traditional PTA, multistep GPTA, and single-
step GPTA in 2010 for predicted bulls (N = 
457) with EBV with at least 75% reliability in 
2014 in the US Jersey with 75,053 genotypes. 
 “base”  
Prediction animals R2 b1 
Traditional PTA  0.40 0.78 
Multistep GPTAa)  0.54 0.89 
ssGBLUP 𝐆𝐆−1  0.56 0.84 
ssGBLUP 𝐆𝐆APY−1  Bullsb) 0.55 0.84 
 Bullsc) 0.56 0.84 
 Rand10K 0.55 0.84 
 Rand15K 0.56 0.84 
a) All tests predicted 482 validation bulls that had 
no daughters in 2010; b) Old bulls with at least 1 
progeny (N = 10,677); c) All bulls with at least 1 
progeny (N = 15,960). 
 

Table 4 shows wall-clock time for setting-
up 𝐆𝐆APY−𝟏𝟏  and one iteration in PCG as well as 
required memory to calculate and store 𝐆𝐆APY−𝟏𝟏  
for a replicate from  Rand10K and Rand30K in  
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US Holsteins. We needed only 7 minutes to 
prepare the submatrices for 𝐀𝐀𝟐𝟐𝟐𝟐−𝟏𝟏. The 
maximum memory requirement for 𝐆𝐆APY−𝟏𝟏  was 
151 GB, which can be handled with recent 
computers. The maximum number of rounds to 
convergence was 1,329 observed in Rand30K. 
 
Table 4. Wall-clock time for setting-up 𝐆𝐆APY−𝟏𝟏  
and one iteration in PCG, and required 
memory in Rand10K and Rand30K for 
569,404. 
 Rand10K Rand30K 
Wall-clock time   
Setting up 𝐆𝐆APY−1  1 h 17 m 2 h 45 m 
An iteration in 
PCG 11.7 s 16.5 s 
Required memory   
Storage for 𝐆𝐆APY−1  42 GB 127 GB 
Other 14 GB 24 GB 
 

Our implementation will be capable of 
running genomic evaluations with more than 
570 thousand genotypes. Assume that we have 
2 million genotyped animals, 10,000 as “base” 
animals, and the same number of markers and 
ancestors to this study. The computing cost for 
𝐆𝐆APY−1  is proportional to the number of 
genotyped animals and the storage cost is also 
the same. The total storage will be 183 GB and 
the computing time for 𝐆𝐆APY−1  will be 4.5 hours. 
Based on the current timing in Rand10K, a 
negligible time for 𝐀𝐀22−1 and 4 more seconds in 
one PCG-round are expected. If we need 1,000 
rounds in PCG, the total computing time for 
the evaluation will be 10.4 hours. Faster 
computers can reduce the time. 
 
 
Conclusions 

 
We conclude that 10,000 or more “base” 
animals provide accurate genomic predictions 
in terms of validation reliability. The choice of 
“base” animals is arbitrary for 𝐆𝐆APY−𝟏𝟏 . Single-
step GBLUP with 𝐆𝐆APY−𝟏𝟏  is computationally 
applicable to a population with a large number 
of genotyped animals. 
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