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Abstract 
 
We tested two modifications into single-step genomic BLUP (ssGBLUP) that allow it to work with a 
large amount of genotyped animals. The first method is based on genomic recursions (APY) to 
construct the inverse of the genomic relationship matrix without directly inverting it; all available 
genotyped animals are included in ssGBLUP with APY, but they are split into base and non-base, and 
the method returns direct predictions. The second method is an interim genomic evaluation (IP) for 
young genotyped animals; only a reference set of animals are used in ssGBLUP with IP, and the 
method returns indirect predictions for young genotyped animals. A dataset from American Angus 
with records for growth traits was used. Over 8 million animals were in the pedigree, of which 51,883 
were genotyped. The ssGBLUP with APY was as accurate as regular ssGBLUP when the number of 
genotyped base animals was at least 10,000; this method was also faster and required less memory. 
The ssGBLUP with IP mimicking the previous official evaluation returned the same accuracy of 
GEBV for young animals as the regular ssGBLUP. While the first method enables complete genomic 
evaluations for huge genotyped populations, the second allows for quick genomic predictions on 
young animals without including their information into a new run of evaluation. 
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Introduction 
 
Genomic selection in beef and dairy cattle has 
currently been performed with multistep 
methods, which use deregressed EBV to 
estimate SNP effects and then direct genomic 
value (DGV) for selection candidates based on 
their genotypes (Meuwissen et al., 2001). In 
multistep, new animals are easily evaluated if 
DGV is computed as a sum of marker effects, 
but not if selection indexes including DGV and 
parent average (PA) are used. 

 
When pedigrees, phenotypes, and 

genotypes are jointly available, single-step 
genomic BLUP (ssGBLUP) (Aguilar et al., 
2010) is a simple choice for genomic 
evaluation. However, in its current 
implementation, ssGBLUP uses direct 
inversion of genomic matrices (Aguilar et al., 
2011), which has a cubic cost and a limit of 
150,000 animals (Aguilar et al., 2013). The 
increasing number of genotyped animals (e.g. 
US Holsteins and American Angus) has been a  

 

challenge for ssGBLUP. Recently, Misztal et 
al. (2014) presented an algorithm to obtain the 
inverse of the genomic relationship matrix, 
which is based on recursions on a fraction of 
the genotyped population. This makes 
ssGBLUP suitable and inexpensive for huge 
populations.  

 
Another way to circumvent the issue on the 

number of genotyped animals is to enable 
ssGBLUP to provide quick evaluations for 
young genotyped animals, without running a 
complete evaluation that requires several hours 
to converge. In this way, quick predictions can 
be calculated indirectly, where genomic EBV 
(GEBV) for young animals are obtained from 
SNP effects based on ssGBLUP solutions. 

 
The goals of this study were to 1) present a 

method for calculating indirect predictions on 
young genotyped animals using ssGBLUP, and 
2) test the feasibility of ssGBLUP with 
genomic recursions for evaluations in 
American Angus.  
 
  

80 

 



INTERBULL BULLETIN NO. 49. Orlando, Florida, July 09 - 12, 2015 

 

Materials and Methods 
 
Data 

 
Datasets from American Angus Association 
(AAA) were available that included birth 
weight (BW), weaning weight (WW), and 
post-weaning gain (PWG). Table 1 shows 
number of animals with records and 
heritability for all traits. A total of 51,883 
animals were genotyped for 54,609 
segregating SNP from the BovineSNP50k v2 
BeadChip (Illumina Inc., San Diego, CA).  
 
Table1. Heritability (h2), number of animals 
with records and genotypes.  

Trait h2 Number of 
records 

Genotyped 
animals with 

records 
BW 0.41 6,189,661 50,784 
WW 0.20 6,890,625 51,830 
PWG 0.20 3,387,252 36,196 

 
 
ssGBLUP with indirect predictions (IP) for 
young animals 

 
For ssGBLUP with indirect predictions, SNP 
effects can be calculated using the current run 
of ssGBLUP with all but young animals, and 
genomic predictions for young animals are 
obtained by multiplying the SNP content by 
the SNP effect to obtain direct genomic value 
(DGV); a more complete GEBV can also be 
available through a selection index that 
combines DGV and parent average (PA). In 
order to explain how it works, consider the 
equation for the GEBV of a single individual 
in ssGBLUP as a combination of equations in 
Aguilar et al. (2010) and VanRaden and 
Wright (2013):  
 
GEBV=w1PA+w2YD+w3PC+w4.1DGV–w4.2PP 
 
where YD is yield deviation, PC is progeny 
contribution, and PP is pedigree prediction for 
the subset of genotyped animals.  
 
The flow for ssGBLUP with IP was: 
 
 

 1) Run ssGBLUP with a reference 
population to obtain GEBV. In this study, 3 
reference populations were tested: 
 ref_2k: reference population with top bulls 
and top cows (n=1,896); 
 ref_8k: reference population with all 
parents that were genotyped (n=8,285), this 
includes ref_2k; 
 ref_33k: reference population with all 
genotyped animals born up to 2012 
(n=33,162), this includes ref_8k; 
 2) Split GEBV into all the components 
shown before. DGV for an animal i in the 
reference population was calculated as in 
Aguilar et al. (2010);  
 3)  Calculate SNP effects using DGV from 
the reference population: 
 

u�= DZ'G-1(DGV) 
 
where u� is a vector of estimated SNP effects, 
D is a diagonal matrix of weights (standardized 
variances) for SNP (identity matrix in this 
case), Z is a matrix of centered genotypes for 
each animal, and G is the genomic relationship 
matrix; 
 
 4) Calculate DGV for young genotyped 
animals (DGVy):   
 

DGVy=Zyu� 
 

where DGVy is a vector of direct genomic 
values and Zy is a matrix of centered 
genotypes for young animals not included in 
ssGBLUP evaluation, respectively. 
 
 5) Combine DGVy with PA for young 
genotyped animals:  
 

GEBVy ≈ w1PA + w4.1DGVy 
 

where GEBVy is GEBV obtained via IP for 
young animals, w1 and w4.1 are weights 
identical for all animals and calculated based 
on selection index. 

 
The ability to predict future phenotypes on 

18,721 young genotyped animals was the 
validation method chosen in this study. 
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ssGBLUP with G inverted by a recursive 
algorithm 

 
When the number of genotyped animals is 
large and there is a need for using all of them 
in ssGBLUP evaluations to get direct 
predictions for all, including young animals, an 
algorithm that splits genotypes into base (b) 
and non-base (c) animals and uses recursion to 
obtain the inverse of the G matrix was 
proposed by Misztal et al. (2014). This 
algorithm is known as APY, and G-1 
containing all genotyped animals can be 
calculated as: 
 

G-1= �Gbb
-1 0
0 0

�+ �-Gbb
-1 Gbc
I

�Mg
-1�-GcbGbb

-1 I� 

 
where the subscript b stands for base and c for 
non-base animals; each element of  Mg for the 
ith animal is mg,i = gii – GibGbb

-1 Gbi. 
 
For this analysis, the definitions of base 

animals were according to the amount of 
information the animals had; this included the 
definitions used for IP (ref_2k, ref_8k, and 
ref_33k), a fourth definition had 3,872 
genotyped parents of genotyped animals as 
base (ref_4k), and the last definition had 
10,000 animals with the highest EBV accuracy 
as base (ref_10k). We also randomly sampled 
5,000 (rand_5k), 10,000 (rand_10k), 15,000 
(rand_15k), and 20,000 (rand_20k) animals to 
be in the base population. 

 
Feasibility of APY for American Angus 

was tested as correlation between regular 
ssGBLUP and ssGBLUP with APY.  
 
 
Results & Discussion 
 
Predictive ability for indirect prediction via 
conversion of DGV into SNP effects is shown 
in Figure 1. When the reference population 
included top bulls and top cows (ref_2k), the 
predictivity of indirect DGVy was smaller than 
predictivity for PA for the three traits (0.23 vs. 
0.29 for BW; 0.28 vs. 0.34 for WW; 0.19 vs. 
0.23 for PWG).  Predictivity for GEBVy 
calculated as an  index of  indirect  DGVy with  
 

PA was greater than those for EBV for the 
three traits (0.31 vs. 0.29 for BW; 0.36 vs. 0.34 
for WW; 0.24 vs. 0.23 for PWG), however, 
this predictivity was smaller than the ones 
from full ssGBLUP (except for WW). 
 

With a larger reference population (ref_8k), 
all indirect DGVy were similar or more 
accurate than PA, and GEBVy had similar 
predictivity as the full ssGBLUP. With the 
largest reference population (ref_33k), all 
indirect DGVy were almost as accurate as 
GEBV from full ssGBLUP, with the index 
marginally improving predictivity for WW. 

  
The marginal improvement observed for 

WW may be caused by the use of less than 
optimal genetic parameters, e.g., zero 
covariance between direct and maternal effects 
(to reduce computing costs). The DGVy 
obtained with ref_33k reference population 
were more accurate than GEBV from full 
ssGBLUP obtained with ref_8k reference 
population. 

 

 
 
Figure 1. Predictive ability of indirect 
predictions on 18,721 young genotyped 
animals when using reference populations 
ref_2k, ref_8k, and ref_33k animals to run 
single-step genomic BLUP (ssGBLUP) and 
derivate SNP effects.  
 
  

82 

 



INTERBULL BULLETIN NO. 49. Orlando, Florida, July 09 - 12, 2015 

 

Overall, we observed that when the number 
of genotyped animals in the reference 
population is small, there is a need to combine 
DGVy with PA; however, when the reference 
population   is   large   (e.g.   previous   official  
evaluation), DGVy becomes the most 
important component and there is no need for 
an index. 

 
For young animals, indirect predictions via 

SNP effects from ssGBLUP seem a viable 
alternative as it can be done separately from 
the full evaluation. As SNP effects are 
calculated based on trait DGV, indirect 
predictions are easily obtained for multi-trait 
models, as done in this study. However, if 
young animals and particularly full-sibs are 
intensively selected, selection on the 
Mendelian sampling will not be accounted for, 
leading to pre-selection bias (Patry and 
Ducrocq, 2011). Analyses by ssGBLUP with 
all genotypes subject to selection are expected 
to account for pre-selection (VanRaden and 
Wright, 2013). 

 
Correlation between GEBV from regular 

ssGBLUP and ssGBLUP when the inverse of 
G is computed with APY is shown in Figure 2. 

 
 
Figure 2. Correlation between GEBV from 
regular ssGBLUP and ssGBLUP with APY, 
when base animals were from reference group 
of animals (top: Reference) or from random 
samples (bottom: Random).   

 

When base animals were from reference 
sets   (ref_2k,   ref_4k,   ref_8k,  and  ref_33k), 
correlations with regular ssGBLUP increased 
with the number of base animals and reached 
0.99 when at least 8,000 animals were in the 
base population, especially for WW and PWG. 
When the animals in the base population were 
randomly sampled, 10,000 was enough to 
reach correlation of 0.99 with regular 
ssGBLUP. Therefore, in ssGBLUP, using 
genomic recursion to invert G while 
conditioning on enough number of base 
animals has the same prediction power as G 
using regular inversion. The memory required 
for APY G-1 using ref_2k, ref_4k, ref_8k, 
ref_10k, and ref_33k was approximately 0.8, 
1.6, 3.3, 4.1, and 13.7 Gbytes, respectively, 
whereas the amount of memory for the regular 
G-1 was 21.6 Gbytes. The computing time for 
constructing APY G-1 in ref_10k was about 8 
times smaller than for regular G-1. Therefore, 
APY G-1 makes computations less costly and 
faster.   

 
With APY conditioning on 10,000 animals, 

for example, the only inverse required is for a 
block of G for 10,000 animals, and additional 
genotypes require only linear storage and 
computations. Subsequently, computations 
with a much larger number of genotyped 
animals may be feasible with predictivity 
similar to the regular inversion. APY would be 
the algorithm of choice for ssGBLUP 
evaluations with a very large number of 
genotyped animals. 
 
 
Conclusions 
 
Both methods presented here are applicable to 
the American Angus population. With a 
sufficient number of animals in the reference 
population, indirect prediction for young 
animals via SNP effects provides similar 
predictivity to full single-step genomic BLUP, 
allowing for quick interim evaluations without 
running a complete evaluation. Use of the 
algorithm for base and non-base animals in 
single-step genomic BLUP, with 10,000 base 
animals, allows for incorporation of a large 
number of genotyped animals into American 
Angus evaluations without losing prediction 
power.  
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