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  ABSTRACT 

  Existence of individual variation in the onset of heat 
stress for daily milk yield of dairy cows was assessed. Data 
included 353,376 test-day records of 38,383 first-parity 
Holsteins from a random sample of US herds. Three 
hierarchical models were investigated. Model 1 inferred 
the value of a temperature-humidity index (THI) at 
which mean yield began to decline as well as the extent 
of that decline. Model 2 assumed individual variation in 
yield decline beyond a common THI threshold. Model 3 
additionally assumed individual variation for the onset 
of heat stress. Deviance information criteria indicated 
the superiority of model 3 over model 2. For model 2, 
genetic correlation between milk yield in the absence 
of heat stress and the THI threshold for heat stress 
was −0.4 (0.11) [marginal posterior mean (marginal 
posterior standard deviation)]. For model 3, genetic 
correlations were −0.53 (0.05) between milk yield and 
THI threshold and −0.62 (0.08) between milk yield and 
yield decay beyond the THI threshold. Total standard 
deviation (sum of additive genetic and permanent envi-
ronmental standard deviations) for the THI threshold 
was 3.95 (0.06), and more than half of that variation 
had an additive genetic origin [56% (5%)]. Because of 
the high genetic correlation [0.95 (0.03)] between yield 
decay and THI threshold with model 3, using only one 
of them as a selection criterion for heat tolerance would 
modify the other in the desired direction. 
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  INTRODUCTION 
  Resistance to heat stress is a trait of major economic 

importance, particularly in regions with hot climates. 
When ambient temperatures are high, animal perfor-

mance and reproductive rates decline (Fuquay, 1981). 
In spite of this trait’s importance, direct phenotypic 
measurement can be difficult to obtain. Ravagnolo and 
Misztal (2000) estimated genetic parameters for resis-
tance to heat stress indirectly by regressing phenotypic 
performance on temperature-humidity index (THI) 
values from a few days previous to milking. As THI 
values increase, animal performance declines, and these 
declines are subject to a threshold response, a point at 
which ambient temperatures exceed an animal’s ther-
moneutral zone and performance begins to decline. A 
threshold around 72 THI, which corresponds to 22°C 
at 100% humidity, has been reported for US Holsteins 
(Ravagnolo et al., 2000; Freitas et al., 2006). 

  The most common approach for improving heat toler-
ance in beef cattle is crossbreeding of high-performance 
breeds with breeds that are locally adapted and more 
resistant to hot climates. In contrast, crossbreeding 
of high-performance dairy breeds such as Holstein 
to locally adapted breeds is unappealing because the 
crossbreds have substantially reduced yield capability 
compared with high-performance purebreds (McDowell 
et al., 1996). Thus, selective breeding of Holstein cows 
for heat tolerance has been proposed as an option for 
genetic improvement of heat tolerance. 

  For this purpose, reaction norm models implemented 
by using random regressions have been shown to be ef-
fective for genetic evaluation of heat tolerance. Several 
studies (Ravagnolo and Misztal, 2000, 2002; Freitas et 
al., 2006) estimated genetic parameters for both yield 
and reproduction traits under the influence of heat 
stress. Heritabilities for those traits increased as a func-
tion of THI. 

  Recently, Sánchez et al. (2009) proposed a hierar-
chical model that could be useful for identification of 
animals that are less sensitive to high temperatures. 
With this model, unlike in previous studies, two differ-
ent criteria were used for defining an animal’s level of 
heat tolerance. The first was the degree to which per-
formance declined after some unknown THI threshold. 
The second was the THI value at which this perfor-
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mance drop begins. Thus, the higher the THI value at 
which yield begins to decline and the lower the rate of 
decline after heat stress starts, the more heat tolerant 
the animal is.

The objective of this study was to investigate the two 
aforementioned definitions of resistance to heat stress 
in a real dairy cattle data set. To achieve this goal, a 
model assuming variation on THI thresholds was com-
pared with one assuming a single THI threshold for the 
entire population.

MATERIALS AND METHODS

Data

Test-day records for first-parity US Holsteins were 
provided by the Animal Improvement Programs Labo-
ratory (ARS, USDA, Beltsville, MD). From this data 
set, only those records produced after 5 or before 305 
DIM, on days with 2 or 3 milking sessions, and with 
associated THI values between 50 and 83 were retained. 
In addition, for records of a particular cow to be con-
sidered valid, it was necessary for her have at least 
7 test-days, a known age on the test-day, and to be 
sired by a bull with more than 50 daughters, having a 
daughter THI range of at least 20 degrees. These edits 
reduced the data set to 2.8 million test-day records in 
4,858 herds. Finally, for further reduction of the data 
set, 10% of the herds were randomly selected. The final 
data set used in the analysis included 353,376 milk yield 
test-day records of 38,383 cows in 15,508 herd-test-day 
(HTD) contemporary groups. Mean HTD class size 
was 22.8 records, and mean daily milk yield was 29.88 
kg with a standard deviation of 6.84 kg. The pedigree 
file was constructed by tracing back 3 generations of 
ancestors and included 95,962 records.

Statistical Models

Three statistical models were used to investigate dif-
ferent aspects of the effect of heat stress on milk yield. 
Model 1 was used to infer the THI value at which mean 
yield began to decline and the extent of that decline:
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where yijk�m is the mth observation on the animal � 
produced in the ith class of the combination between 
DIM (31 levels) and milking frequency (MF, 2 levels), 
the jth class of age (8 levels), and the kth contemporary 
group (herd-year, HY); c� is a cow effect for which no 

genetic structure was considered; β is a coefficient for 
linear regression on the number of test-day THI units 
above an overall threshold (τ0) to be estimated; and 
eijk�m is a residual term, which is assumed to be homo-
scedastic across test-day THI; THI�m refers to the test-
day THI value index and was computed using the 
hourly average of this index of 3 d previous to milking. 
The hourly index was computed considering tempera-
ture (in °F) and humidity (in %) as described in Ravag-
nolo and Misztal (2000). Note that HY rather than 
HTD was used to define contemporary groups to avoid 
confounding the contemporary group definition with 
test-day THI.

To simplify notation of model 1, consider the vec-
tors

 ′ ′ ′ ′⎡
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⎤
⎦⎥β1 = [DIM(MF)] HY age, ,  

and x1,�m, which selects the appropriate elements in ′β1 
for test-day yield m of cow �. Using this alternative 
notation, model 1 is
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The inferential method implemented for estimating 
parameters for model 1 was a Bayesian Markov-chain 
Monte Carlo procedure, specifically a Gibbs sampler al-
gorithm. The data-generating process can be described 
by the following multivariate normal (MVN) distribu-
tion:
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where N is the total number of cows with test-day re-
cords, M� is the number of test-day records for cow �, 
and σe

2 is the residual variance. Assumed prior distribu-
tions for the parameters in model 1 were

 p U
I J K

β1( ) ∝ −∞ +∞( )
+ +
∏ , , 

where I is the number of combined classes for DIM and 
MF; J is the number of age classes; K is the number of 
HY; and U indicates the density of an uniform distribu-
tion;

 p MVNc cc 0 I| , ,σ σ2 2( ) ∝ ( )  
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where σc
2 is cow variance and I is an identity matrix;

 p Uβ( ) ∝ −∞ +∞( ), ; 

 p Uτ0 55 0 90 0( ) ∝ ( ). , . ; and 

 p eσ2 1( ) ∝ . 

In a subsequent hierarchical stage, prior distribution 
for σc

2 was defined as p cσ2 1( ) ∝ .

Given these prior distributions and the assumed data-
generating process, the joint posterior distribution can 
be constructed by multiplying the prior distribution by 
the conditional distribution of the data, given the pa-
rameters (conditional likelihood). Finally, for imple-
mentation of the Gibbs sampler, conditional posterior 
distributions must be obtained from the joint posterior 
distribution by retaining those parameters of interest. 
For this study, it is straightforward to show that the 
joint conditional posterior distribution for all position 
parameters ′ = ′ ′( )θ β1, , ,c β  given the variance component 
and threshold value, follows this normal process:

 θ θ| , , , ~ ,̂ ,σ σ τc e eMVN2 2
0

1 2y C−( )σ  

where θ̂ are solutions to the traditional mixed model 
equations of Henderson et al. (1959), which can be rep-
resented by C rθ =  (Sorensen and Gianola, 2002). Given 
prior and data-generating process assumptions, the 
conditional posterior distribution for both variance 
components is proportional to an inverse chi-squared 
distribution (Sorensen and Gianola, 2002).

Finally, the conditional posterior distribution for τ0 
(the THI value at which milk yield begins to decline) 
did not have a closed form:
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Thus, a Metropolis step was implemented using a nor-
mal distribution centered on the current value of τ0 as 
proposal density.

The Markov-chain Monte Carlo procedure can be 
summarized by the following steps:

 1.  Threshold τ0was sampled from its fully condi-
tional posterior distribution using a Metropolis 
step;

 2.  Mixed-model equations were constructed using 
max ,0 0THI m� −( )⎡

⎣⎢
⎤
⎦⎥τ  as a covariate;

 3.  Based on the constructed mixed-model equations, 
the position parameters were jointly sampled 
from the appropriate joint conditional posterior 
distribution by using a sparse Cholesky factor of 
C;

 4.  Variance associated with cow effect was sampled 
from the appropriate inverse-scaled chi-squared 
distribution; and

 5.  Residual variance was sampled from the appro-
priate inverse-scaled chi-squared distribution.

A second model was used to study the original 
definition of genetic tolerance to heat stress; that is, 
individual decline in phenotypic performance after a 
particular THI threshold:

 y  m� � � � � �= ′ + + −( )⎡
⎣⎢

⎤
⎦⎥{ } +x1 1 00, max , ,m m mTHI eβ μ τβ   

  [2]

where the new terms with respect to model 1 are μ�, a 
cow-specific intercept, and β�, a coefficient for linear 
regression, nested within cow �, on the number of THI 
units above an overall threshold (τ0). In this model, 
contrary to model 1, the kth contemporary group was 
defined by HTD instead of HY (see definition of ′x1,�m 
for model 1). The data-generating process again was 
described by an MVN distribution:
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In addition to the prior assumptions for systematic 
parameters in model 1, the animal’s specific random 
variables μ and β (underlying variables) were assumed 
to have an MVN distribution:

 p MVNβ μ, | , ,P Xb Zu P I0 0( ) ∝ + ⊗( )  

where X is an incidence matrix for systematic effects, 
b is a vector of systematic effects for the underlying 
variables such that ′ = ′ ′⎡

⎣⎢
⎤
⎦⎥b b bμ β , Z is an incidence ma-
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trix for additive genetic effects, u is a vector of additive 
genetic effects such that ′ = ′ ′⎡

⎣⎢
⎤
⎦⎥u u uμ β , and P0 is the 

residual 2 × 2 (co)variance matrix between underlying 
variables, which is equivalent to the permanent envi-
ronmental (co)variance matrix between observations 
(y).

The b vector should include systematic effects com-
mon to all records from the same cow. For this study, 
the only effect considered was an overall mean; however, 
for identification purposes, ′bβ was constrained to zero 
because it was confounded with HTD on the previous 
hierarchical level. Each HTD level corresponded exactly 
to a single THI value. The distribution for u was MVN 
according to the infinitesimal model (Bulmer, 1980):

 p MVNu G 0 G A0 0| ,( ) ∝ ⊗( ), 

where G0 is the additive genetic 2 × 2 (co)variances ma-
trix between underlying variables and A is the known 
numerator relationship matrix between all animals in 
the population. In addition, the prior distributions for 
the remaining parameters (b′ and P0), which describe 
the distribution of the underlying variables, were im-
proper uniform. In a final hierarchical stage, a uniform 
prior distribution was assumed for G0.

This model and its hierarchical structure were simi-
lar to the model described by Sánchez et al. (2009), 
but a single threshold was assumed for all the animals. 
All the fully conditional posterior distributions for the 
position and dispersion parameters had standard forms 
and were described by Varona et al. (1997) in a study 
that involved a hierarchical model for fitting linear 
functions with intercept and slope. The only nonstan-
dard conditional posterior distribution is that of the 
THI threshold:
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Previous simulation studies under balanced condi-
tions (J. P. Sánchez, unpublished data) showed the 
capability of the proposed method to estimate the 
overall threshold appropriately by using a Metropolis 
step for sampling this conditional posterior distribu-
tion. However, the procedure was not able to estimate 
the parameter appropriately with real observations. 
The overall threshold was shifted to the lower bound 
of its a priori defined parameter space. Because of that 

problem, the threshold was constrained to the value 
estimated with model 1.

Model 3 can be described by

 y   m� � � � � � �= ′ + + −( )⎡
⎣⎢

⎤
⎦⎥{ } +x1 1 00, ,max , .m m mTHI eβ μ β τ   

  [3]

Individual variation was assumed to exist for the 
threshold position, and contemporary groups were de-
fined as HTD. Model 3 was the same as the model pre-
sented in the simulation study of Sánchez et al. (2009). 
The data-generating process for model 3 was a normal 
distribution:
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Model 3 is similar to model 2, except that each ani-
mal with records had a unique threshold (τ0,�) rather 
than a population threshold (τ0). The only difference 
regarding prior assumptions for model 2 was that the 
underlying variables were jointly described by different 
MVN distribution:

 p MVNβ μ τ, , | , .0 P Xb Zu P I0 0( ) ∝ + ⊗( )  

Similar to model 2, ′ = ′ ′ ′⎡
⎣⎢

⎤
⎦⎥

b b b bμ β τ0
, ′bβ was con-

strained to zero, and in addition ′bτ0
 was fixed to the 

estimated value of the overall threshold obtained from 
model 1. In this case, P0 is the residual 3 × 3 (co)vari-
ance matrix between underlying variables. The distri-
bution for ′ = ′ ′ ′⎡

⎣⎢
⎤
⎦⎥

u u u uμ β τ0
 was a priori MVN accord-

ing to the genetic infinitesimal model (Bulmer, 1980):

 p MVNu G 0 G A0 0| , ,( ) ∝ ⊗( )  

where G0 has dimension 3 × 3 with the same meaning 
as for model 2.

The same prior assumptions for b′ and the dispersion 
matrix P0 in model 2 were adopted for model 3. All the 
position and dispersion parameters had known closed 
forms (Varona et al., 1997; Sorensen and Gianola, 
2002; Sánchez et al., 2009). The only parameters with a 
nonstandard conditional posterior distribution were the 
thresholds associated with each animal, which could be 
expressed as:
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where the scalars pi j0
,  refer to the appropriate terms of 

the inverse of the residual (co)variance matrix in the 
second hierarchical stage (P0); that is, the (co)variance 
matrix for the permanent environmental effect on the 
observations (y). The first factor in the previous equa-
tion came from the conditional likelihood and, as such, 
depended only on the assumed data-generating process. 
The second factor depended on the specific assump-
tions for the second hierarchical stage. For sampling 
this distribution, a Metropolis step was used along with 
a normal density centered in the current value of τ0,� as 
proposal (i.e., random walk Metropolis).

Models 2 and 3 were compared by using the deviance 
information criterion (Spiegelhalter et al., 2002). For 
each model, a single Markov chain was run that had 
a length of 140,000 rounds for model 1 and 250,000 
rounds for models 2 and 3; 20% (model 1) and 10% 
(models 2 and 3) of the chains samples were discarded 

as the burn-in period. After burn-in, 1 in 30 samples for 
model 1 and 1 in 25 samples for models 2 and 3 were 
retained for analysis. Convergence of the chains was 
determined by visual inspection of the trace plots for 
the parameters of major interest.

The variance of the proposal distributions used for 
the Metropolis step were 0.08 (model 1) and 0.5 (model 
3), which yielded acceptance rates after burn-in of 0.35 
and 0.42, respectively. For model 3, the same proposal 
variance was used for all the animals, and the accep-
tance rate was the mean across all the animals with 
records. For model 2, the overall threshold position was 
constrained to 71 THI; thus, no Metropolis step was 
needed.

RESULTS

For an initial description of the relationship between 
milk yield and THI, the residuals from model 1 without 
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Figure 1. Residuals averaged by integer values for the temperature-humidity index (THI) of records from the model 1, with the load function 

of max THI  0 0, �m −( )⎡
⎣⎢

⎤
⎦⎥τ  excluded from it; the solid line represents the overall mean yield as a function of THI estimated from the complete 

model 1.



considering regression on the load function 
max ,0 0THI m� −( )⎡

⎣⎢
⎤
⎦⎥τ  were calculated. Figure 1 shows 

means of those residuals by THI value. A decline in 
overall yield around 71 THI is evident. Using the com-
plete model 1, the threshold for declining milk yield 
estimated as the marginal posterior mean was 71.00 
(0.18) THI (marginal posterior standard deviation). 
Beyond that threshold, the estimated slope of the linear 
change in milk yield was −0.15 (0.01) kg/THI. Mean 
yield as a function of THI estimated from model 1 is 
also shown in Figure 1. Figure 2 shows the marginal 
posterior distributions for those 2 parameters as well as 
their trace plots. From this model, means of the mar-

ginal posterior distributions for the residual and cow 
variances were 14.00 (0.12) and 16.48 (0.04) kg2, re-
spectively.

Table 1 shows the estimated genetic and environmen-
tal parameters on the underlying variable scale from 
model 2. The estimated heritability for milk yield in 
the absence of heat stress (THI <71.0) was 0.14 (0.01). 
This parameter decreased to a minimum of 0.13 (0.01) 
at THI 76 and then started to increase until reaching 
a maximum of 0.18 (0.04) at a THI of 90. The entire 
heritability pattern (Figure 3a) was computed using the 
following linear function for obtaining the appropriate 
variance component patterns in each round of Gibbs 
sampler:
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Figure 2. Marginal posterior distributions (left) and trace plots of the sampled values (right) for the overall threshold (below) and the regres-
sion coefficient beyond this threshold (above) estimated using model 1. THI = temperature-humidity index.
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Table 2 shows estimated genetic and environmental 
parameters on the underlying variable scale from 
model 3. Estimated heritability at a THI of 60 was 0.17 
(0.01). The estimate of this parameter decreased to 
0.13 (0.02) at THI 80 and then increased up to 0.16 
(0.03) at a THI of 90. Computation of the heritability 
pattern (Figure 3b) used approximate equations for 
obtaining additive genetic and permanent environmen-
tal variances at different THI because variance compo-

nents at a given THI are nonlinear functions of Ĝ0 and 
P̂0. Sampling from the marginal posterior distribution 
of different variance components at THI t relied on 
generating total genetic and phenotypic values for all 
animals for a particular THI (following model equa-
tion); and then empirical variances for those values 
were computed and considered to be a sample from the 
appropriate marginal posterior distribution (Sánchez et 
al., 2009).

Variability of animal effects as a function of THI 
based on a sample of 200 animals is shown in Figure 4a 
for model 2 and in Figure 4b for model 3. For model 3, 
the total standard deviation (sum of additive genetic 
and permanent environmental standard deviations) for 
the THI threshold was 3.95 (0.06) (variances in Table 
2), which yields an approximate range of variation for 
individual THI thresholds of 63 to 79.

Deviance information criterion values for models 2 
and 3 were 1,338,527 and 1,325,871, and the equivalent 
numbers of parameters were 51,096 and 52,670, respec-
tively. Those values agree with the actual number of 
parameters.

DISCUSSION

The deviance information criterion values support 
the assumption that individual variation exists for the 
onset of heat stress. Although this hypothesis was pro-
posed in earlier studies on genetics of heat tolerance in 
dairy cattle (Ravagnolo and Misztal, 2000), it was not 
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Table 1. Marginal posterior statistics for genetic and environmental parameters of underlying variables in a 
model in which tolerance to heat stress was measured as individual decline in phenotypic performance after a 
particular temperature-humidity index threshold (model 2) 

Parameter1 Mean Median SD

95% Highest posterior 
density region

Effective sample 
size, n

Lower 
boundary

Upper  
boundary

σ( )g p I+
2

15.44 15.44 0.15 15.13 15.74 808

σ( )g p S+
2

0.06 0.06 0.003 0.05 0.06 645

σgI
2

4.17 4.17 0.32 3.55 4.81 311

σgS
2

0.016 0.016 0.004 0.008 0.023 27

hI
2

0.27 0.27 0.02 0.23 0.31 296

hS
2

0.28 0.29 0.07 0.14 0.40 32

ρgI S, −0.40 −0.40 0.11 −0.62 −0.19 48

ρpI S, −0.47 −0.47 0.04 −0.55 −0.39 79

1σ( )g p+
2  = total [additive genetic (g) + permanent environmental (p)] variance for intercept (I) or slope (S); σg

2 
= additive genetic variance for I or S; h2 = heritability (σ σg g p

2 2/ ( )+ ) for I or S; ρgI S,
 = genetic correlation be-

tween I and S; and ρpI S,
 = permanent environmental correlation between I and S.



modeled until now mainly because of statistical difficul-
ties.

Model 1 estimates of the threshold for onset of heat 
stress for milk yield were within the range previously 
reported for different samples of the US Holstein 
population (Ravagnolo et al., 2000; Freitas et al., 2006; 
Bohmanova et al., 2007). Onset of heat stress in the 
southeastern United States generally occurs at lower 
THI than in other regions (Bohmanova et al., 2007), 
which could be a consequence of high humidity that 
negatively affects the efficiency of cooling systems. 
Estimated effect of heat stress for the present study 
based on Holstein data from the entire United States 
was less intense than in other studies that only included 
data from regions subject to heat stress (Ravagnolo 
and Misztal, 2000; Freitas et al., 2006; Bohmanova et 
al., 2007). That lessened intensity is reflected in the 
magnitude of the slope for mean performance decay 
(−0.15 kg/THI), which is similar to that for regions 
with less heat stress (Freitas et al., 2006). In contrast, 
the estimated threshold for the onset of heat stress in 
the present study was close to values previously esti-

mated for regions with extremely intense heat stress, 
such as the southeastern United States (Freitas et al., 
2006).

Similar to previous studies (Ravagnolo and Misztal, 
2000; Freitas et al., 2006), antagonistic correlations were 
found between yield in the absence of heat stress and 
heat tolerance as expressed through both environmental 
and genetic correlations between intercepts and slopes 
(models 2 and 3) and between intercepts and thresh-
olds (model 3). In addition, correlations estimated with 
model 2 were similar in magnitude to those previously 
estimated from different samples of US Holsteins (Rav-
agnolo and Misztal, 2000; Freitas et al., 2006).

Previous studies on estimation of genetic parameters 
for heat tolerance (Ravagnolo and Misztal, 2000; Freitas 
et al., 2006) that used models similar to model 2 always 
reported lower heritability estimates in the absence of 
heat stress than for models that did not consider heat 
tolerance. Those studies showed that additive genetic 
variance and heritability tend to increase with THI (as 
also observed for model 2). Thus, reported heritabilities 
in the absence of heat stress were the lower bound for 
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Figure 3. Heritability (h2) of daily milk production as a function of temperature-humidity index (THI) estimated using model 2 (a) and 
model 3 (b).



the heritability pattern with THI. In models without an 
effect for heat tolerance, the reported heritabilities can 
be considered as weighted means across the heritabil-
ity pattern with THI; therefore, heritability estimates 
from such models will be greater than those in the 
absence of heat stress. In fact, heritability estimates 
in the absence of heat stress from model 2 agree well 
with estimates reported by Freitas et al. (2006); their 
estimates of heritability of milk yield in the absence of 
heat stress ranged from 0.12 for southern California to 
0.18 for Georgia, and their mean estimate across states 
was 0.14, which is the same as heritability estimated for 
the entire US Holstein population with model 2 when 
THI is lower than 71.

Slopes and individual thresholds from model 3 were 
strongly positively correlated (≥0.95) both genetically 
and environmentally. By considering either one as a 
selection criterion, the other will be modified. This re-
lationship is favorable for selection because breeding 
for less negative slopes would increase the value of the 
thresholds for the onset of heat stress.

It must be noted that the meaning and values of 
the slopes from models 2 and 3 are similar but not 

the same, which is reflected in the correlation (0.76) 
between predicted individual slopes (marginal posterior 
means) under the two models. The Pearson correlation 
coefficient between EBV (marginal posterior means) 
for slopes across models was 0.49. This small correla-
tion across models could be explained by the high en-
vironmental and genetic correlations between slope and 
threshold for model 3 (Table 2); those relationships are 
not considered in model 2. The correlation coefficient 
between EBV for slopes from model 2 and EBV for 
threshold from model 3 has a similar magnitude (0.42). 
With model 3, heat tolerance effect could be consid-
ered to be split between slope and threshold, which are 
highly correlated to each other and equally correlated 
to the heat tolerance effect in model 2.

The methodology applied in this study was previ-
ously investigated in a simulation study by Sánchez et 
al. (2009). Their results were promising and showed 
the ability of the method to detect environmental and 
genetic sources of variation in heat tolerance properly, 
both for linear change in performance after an animal-
specific threshold is reached and for the threshold itself. 
In agreement with that study, bad mixing was observed 
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Table 2. Marginal posterior statistics for genetic and environmental parameters of underlying variables in a 
model in which tolerance to heat stress was measured as individual decline in phenotypic performance after a 
temperature-humidity index threshold that varied by individual (model 3) 

Parameter1 Mean Median SD

95% Highest posterior density region
Effective 

sample size, nLower boundary Upper boundary

σ( )g p I+
2

15.93 15.93 0.15 15.63 16.24 614

σ( )g p S+
2

0.10 0.10 0.004 0.09 0.11 25

σ( )g p T+
2

11.02 11.03 0.29 10.40 11.55 41

σgI
2

4.86 4.85 0.37 4.10 5.58 196

σgS
2

0.016 0.016 0.002 0.012 0.020 41

σgT
2

8.72 8.67 0.86 7.15 10.59 36

hI
2

0.29 0.29 0.02 0.25 0.33 199

hS
2

0.32 0.32 0.04 0.25 0.41 39

hT
2

0.56 0.56 0.05 0.47 0.65 31

ρgI S, −0.62 −0.62 0.08 −0.77 −0.46 24

ρgI T, −0.53 −0.53 0.05 −0.63 −0.42 60

ρgS T, 0.95 0.96 0.03 0.90 0.99 7

ρpI S, −0.45 −0.45 0.03 −0.52 −0.40 37

ρpI T, −0.26 −0.26 0.04 −0.35 −0.18 33

ρpS T, 0.97 0.97 0.01 0.95 0.99 28

1 σ( )g p+
2  = total [additive genetic (g) + permanent environmental (p)] variance for intercept (I), slope (S), or 

threshold (T); σg
2 = additive genetic variance for I, S, or T; h2 = heritability (σ σg g p

2 2/ ( )+ ) for I, S, or T; ρg = 
genetic correlation among I, S, and T; and ρp = permanent environmental correlation among I, S, and T.



when correlations between underlying variables were 
extreme.

Unexpected results were obtained during the initial 
fitting of the animal models to the current data set. 
For example, the optimal change-point for model 2 
converged to the lower bound of its a priori-defined 
parameter space. Also, the threshold mean for model 3 
converged to a THI of 67.5, which was much lower than 
the THI threshold of 71 that was estimated with model 
1. In addition, the mixing of the chain was extremely 
slow. To avoid those problems, the unique change-point 
(model 2) and the threshold mean (model 3) were 
constrained to a THI of 71, the value estimated from 
model 1. In spite of that constraint, sources of variation 
in the onset of heat stress for milk yield could still be 
determined.

Previous simulation studies (Sánchez et al., 2009) 
conducted under balanced data conditions demon-
strated the ability of models 2 and 3 to recapture pa-

rameters used in the data simulation. To investigate 
why a threshold constraint was necessary, a simulation 
test was conducted under the current study’s data and 
pedigree structure. New records were generated ac-
cording to models 2 and 3 with parameters (variance 
components) estimated from the real data (Tables 1 
and 2). All parameter values could be recaptured. The 
simulation test was repeated with several modifications 
in the generation of data, including fixing the value of 
the residuals (in both hierarchical levels) and the breed-
ing values to those figures predicted using the real data 
set and the models with the threshold constraints at a 
THI of 71, instead of generating them from appropriate 
normal distributions. It was observed that only when 
the residuals in the first hierarchical stage were fixed, 
the procedure was not able to recover the real values 
used in the simulation, particularly the overall thresh-
old in model 2 and the threshold variance in model 3. A 
close inspection of those residuals showed a departure 
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Figure 4. Prediction of cow effects as a function of temperature-humidity index (THI) using model 2 (a) and model 3 (b).



from normality, skewness and kurtosis coefficients were 
−0.33 and 3.78, respectively, which could explain the 
need of constraint for getting reasonable results in our 
analyses. Based on this observation, a model that as-
sumed a thick-tailed distribution (t-distribution) for 
the residuals in the first hierarchical stage would be 
preferable (Sorensen and Gianola, 2002).

Prior assumptions for estimating the overall thresh-
old with model 2 were weaker than the corresponding 
assumptions for estimating individual thresholds with 
model 3. For model 2, no relationship between relatives 
was considered, and the overall threshold was not cor-
related a priori to other parameters in the model. How-
ever, model 3 still did not allow for proper estimation 
or identification of the mean threshold, although the 
misidentification problem of the overall threshold was 
less severe than with model 2. In previous studies with 
nonlinear hierarchical longitudinal models (Ferris et al., 
1985; Varona et al., 1998; Rekaya et al., 2000), these 
prior assumptions have been shown to improve esti-
mation greatly when compared with other techniques 
without such prior assumptions; for example, 2-step 
procedures and log-linear random regression models.

The major negative issue related to the proposed 
models is their highly parameterized structures that 
make the estimation procedures inefficient. Future 
research should address the observed slow mixing 
and convergence rates. Joint update algorithms, more 
parsimonious model parameterizations, or nonnormal 
residual distribution can be used to make the models 
more robust to departures in the data from model as-
sumptions.

CONCLUSIONS

Variation in the onset of heat stress for daily milk 
yield exists in the US Holstein population. Part of that 
variability has a genetic origin that could be useful in 
genetic selection programs for heat tolerance. How-
ever, given the strong opposite correlation between the 
threshold for heat stress and the decline in milk yield 
after that threshold is reached, either heat tolerance 
trait could be modified in the desired direction by 
considering the other as a selection criterion. A model 
including effects for both heat tolerance traits is sta-
tistically preferable, and ranking of animals based on 
EBV for slopes from a model assuming variation only 
in yield decay would be different by 25% from that 
based on EBV for slopes from a model assuming varia-
tion both on slope and onset of heat stress.
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