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Abstract

Uruguay is pursuing renewable energy production pathways using feedstocks from its agricultural sector to

supply transportation fuels, among them ethanol produced from commercial technologies that use sweet and

grain sorghum. However, the environmental performance of the fuel is not known. We investigate the life cycle

environmental and cost performance of these two major agricultural crops used to produce ethanol that have

begun commercial production and are poised to grow to meet national energy targets for replacing gasoline.

Using both attributional and consequential life cycle assessment (LCA) frameworks for system boundaries to

quantify the carbon intensity, and engineering cost analysis to estimate the unit production cost of ethanol from
grain and sweet sorghum, we determined abatement costs. We found 1) an accounting error in estimating N2O

emissions for a specific crop in multiple crop rotations when using Intergovernmental Panel on Climate Change

(IPCC) Tier 1 methods within an attributional LCA framework, due to N legacy effects; 2) choice of baseline and

crop identity in multiple crop rotations evaluated within the consequential LCA framework both affect the

global warming intensity (GWI) of ethanol; and 3) although abatement costs for ethanol from grain sorghum are

positive and from sweet sorghum they are negative, both grain and sweet sorghum pathways have a high

potential for reducing transport fuel GWI by more than 50% relative to gasoline, and are within the ranges

targeted by the US renewable transportation fuel policies.
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Introduction

There has been much interest over the last decade in

developing and scaling renewable energy to address

both climate change and energy security in countries

around the world (Kammen, 2006). Rationale for devel-

oping renewable energy varies by country and econ-

omy, but a strong case for building domestic supply

capacity is to support rural economic development.

Policies for pursuing renewable energy for decarboniz-

ing transportation favor the development of domestic

commercial biofuels as these also help to invest in local

economies and reduce trade deficits related to foreign

oil dependence. In North America, these policies have

been designed to follow life cycle assessment (LCA)-

based greenhouse gas (GHG) accounting (U.S. Congress

2007; US EPA 2010). Countries around the world are

developing similar policies in an effort to spur their

local economies, and in some cases, also to mitigate cli-

mate change. In Uruguay, domestic biofuels are in pro-

duction and are poised to expand production of

domestic energy resources. Uruguay’s government-

owned oil company, ANCAP, has invested in domestic

production of ethanol from sorghum crops, but to this

point, they have not evaluated the climate impacts of

their biofuel program. Our goal was to develop a life

cycle framework to evaluate their current biofuels from

sorghum, using this system approach to inform policy

to understand and guide the life cycle performance of

Uruguay’s domestic biofuel investment using metrics

such as GHG accounting.
Correspondence: Dr Paul R. Adler, tel. + 814 865 8894,

fax + 814 863 0935, e-mail: paul.adler@ars.usda.gov

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 1

GCB Bioenergy (2017), doi: 10.1111/gcbb.12462

http://orcid.org/0000-0002-6787-631X
http://orcid.org/0000-0002-6787-631X
http://orcid.org/0000-0002-6787-631X
http://orcid.org/0000-0002-6243-7510
http://orcid.org/0000-0002-6243-7510
http://orcid.org/0000-0002-6243-7510
http://creativecommons.org/licenses/by/4.0/


Energy is an important driver for economic growth,

and for many developing nations, its consumption is

projected to increase to improve standards of living. In

Uruguay, demand for energy has increased 70% over

the last 10 years, with the industrial sector being the

highest consumer (~76 PJ), followed by the transporta-

tion (49 PJ) and residential and commercial (46 PJ) sec-

tors (DNE, 2013). Near-term options for meeting energy

demand have been met by increased import of petro-

leum and a small, but expected to increase in import of

natural gas since Uruguay lacks domestic reserves of

fossil energy resources. There are no reserves of coal,

petroleum, or natural gas, and thus, historically any use

of such resources for thermal, electrical, and transporta-

tion has relied on import from the global market. In

2013, fossil energy accounted for 41% of energy con-

sumed, 40% of this was comprised of petroleum, and

1% natural gas, while renewable energy accounted for

59% of energy consumed, with 39% coming from waste,

33% hydroelectric power, 19% from wood, 6% from

wind, and 3% from biofuels. The transportation sector,

almost exclusively dependent on liquid fuel supply, lar-

gely relies on diesel and gasoline refined from imported

crude oil, with some domestic production of fuel etha-

nol and biodiesel from domestic agricultural products

accounting for ~1.5% of total energy (DNE (Direcci�on

Nacional de Energ�ıa), 2013). Biomass from forest and

agricultural sectors is an important source of renewable

energy to support effort to address climate change.

Near-term energy policy in Uruguay is focusing on

developing liquid fuel markets from agricultural feed-

stocks and electricity from forest biomass, which have

been shown to reduce GHGs associated with energy

production and use (Adler et al., 2012).

LCA approaches are being pursued to best guide

decisions in both energy sectors; GHG accounting and

cost abatement (e.g., Pourhashem et al., 2013) are valu-

able metrics to help understand the effectiveness of pol-

icy investments, in particular when government is

investing in carbon abatement strategies. Transportation

fuel supply must be compatible with the vehicle fleet

and new vehicles entering the market. Thus, ethanol-

blended fuels can be scaled up to the blend wall for the

existing fleet of gasoline-fueled vehicles and up to 85%

for flexible fuel vehicles.

Policy around low-carbon transportation fuels in the

United States (CARB 2010; US EPA 2010) uses a combi-

nation of attributional LCA (ALCA) (ISO 2006) and con-

sequential LCA (CLCA) (Ekvall & Weidema, 2004)

methods, the latter being used primarily to quantify car-

bon emissions from indirect land-use change induced

by changes in commodity markets (Searchinger et al.,

2008; Plevin et al., 2015). CLCA is also used to guide

system boundary rules that test a new product or

production strategy against a conventional (baseline)

product or production strategy. For example, Sarkara &

Miller (2014) used CLCA boundary rules for assessing

changes in water quality when introducing switchgrass

into agricultural landscapes for bioenergy production.

Similarly, both Pourhashem et al. (2013) and Adler et al.

(2015) used CLCA boundary settings to test the effects

of soil carbon management within biofuel systems and

use these settings to estimate the soil GHG emissions of

nitrous oxide and soil carbon change.

Plevin et al. (2014) argue that ALCA fails to account

for the critical changes within the economy that may

result from implementing climate change policy, espe-

cially for biofuels. These changes can lead to error when

comparing the global warming intensity (GWI) of a bio-

fuel relative to the fossil fuels they aim to displace. The

authors conclude that although CLCA can account for

change, it also introduces results that are scenario

dependent and uncertain when used to evaluate biofuel

policy.

In addition to scenarios which define how cropping

systems may change with the introduction of a bioen-

ergy crop, there is also the interaction of crops within a

rotation which can affect the GHG emissions for a given

crop within both the ALCA and CLCA frameworks. In

this analysis of bioenergy production in Uruguay, there

is not only the increase in planting of grain and sweet

sorghum, but the change in crop identity in the rotation

due to external economic and regional factors.

Soil biogeochemical changes across crop rotations

leading to GHG emissions of N2O and CO2 from soils

are not always precisely captured when using CLCA or

ALCA due to limitations in the estimation methods

used. The Intergovernmental Panel on Climate Change

(IPCC) has developed guidelines to estimate N2O emis-

sions from cropped and grazed soils, as well as soil

organic carbon (SOC) stock changes (de Klein et al.,

2006). Explicit in the guidelines are tiers reflecting

methodological complexity with Tier 1 methods based

on default emission factors being the simplest, Tier 3

methods employing the complex process-based models,

and Tier 2 methods being intermediate. Process-based

models (Tier 3) have matched measured N2O emissions

more closely (Del Grosso et al., 2008) and represented

soil carbon changes better (Del Grosso et al. 2016) than

IPCC Tier 1 methods. Furthermore, as hypothesized in

this study, when considering complex rotations, Tier 1

methods do not capture legacy effects of nitrogen man-

agement from prior crops in a rotation because they

assume that all applied N is cycled within a year. This

could lead to underestimates of N2O emissions with

Tier 1 methods due to carryover of N from one crop in

a rotation to another, a source of N not accounted for in

Tier 1 in contrast with Tier 3 N2O estimation methods.
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Given the challenge of appropriately capturing

changes in agricultural GHG emissions when a biofuel

policy and the crops that meet the policy are intro-

duced, and the potentially divergent estimation out-

comes from Tier 1 and Tier 3 soil GHG accounting, our

objective in this article was to evaluate the GWI of

newly introduced biofuel pathways in Uruguay’s varied

agricultural crop rotations using Tier 1 and 3

approaches and CLCA and ALCA frameworks. We

explore major differences in direct GHG emissions for

biofuels introduced into complex agricultural rotations

and posit that decision outcomes from life cycle inven-

tories defined by CLCA and ALCA frameworks can

lead to very significant soil N2O accounting omissions,

which will impact how the biofuel program ranks and

rates petroleum alternatives. While CLCA encompasses

a wide spectrum of changes introduced by a new pro-

duct or policy, including especially economic effects

resulting from market changes (Anex & Lifset, 2014;

Hertwich, 2014; Plevin et al., 2014; Suh & Yang, 2014),

our goal was to investigate only biophysical changes in

soil N2O emissions resulting from the introduction of a

crop within a multicrop system using CLCA because it

is not possible to capture such effects with ALCA meth-

ods used in prior literature (e.g., Spatari and MacLean

2010). We combine GHG accounting with cost analysis

to investigate the abatement cost of future bioenergy

supply in Uruguay and evaluate the environmental and

cost effectiveness of their major investments into grain

sorghum and sweet sorghum biorefinery capacity. The

analysis aims to explore the range of differences in bio-

fuel life cycle GWI when using consequential and attri-

butional system boundaries, IPCC Tier 1 and Tier 3

approaches to estimate soil GHG emissions, and agri-

cultural rotations scenarios that include and exclude

pasture land, which constitutes a major fraction of agri-

cultural land in Uruguay.

Materials and methods

Site selection and description

Our analysis focused on two locations in Uruguay where etha-

nol is being produced from agricultural feedstock, Paysand�u in

western and Bella Uni�on in northern Uruguay (Fig. 1). The site

near Paysand�u produces ~70 000 m3 ethanol annually from

grain sorghum, requiring 156 600 Mg of grain sorghum annu-

ally (Table 1). With the regional average grain sorghum yield

of ~4 Mg ha�1, the biorefinery requires ~40 000 ha of land

annually. The site near Bella Uni�on produces ethanol from sug-

arcane and sweet sorghum. They have an annual production

capacity of ~30 000 m3 ethanol annually, ~95% from sugarcane,

and ~5% from sweet sorghum. Although these locations have

similar climate without a large gradient across the region

(Table 2), different crops are produced in these regions due to

differences in infrastructure, such as distance to ports, and sug-

arcane mills in the north. The cropland in Paysand�u is more

dominated by grain crops, whereas in Bella Uni�on, commodity

crops are less common, and forage crops more common.

Life cycle assessment

The life cycle assessment (LCA) was conducted in two phases

as prescribed by ISO 14040 (2006) procedures. First, all sources

of greenhouse gases were tabulated in a life cycle inventory

(LCI) analysis and then the contribution of the sources of

greenhouse gases on climate was determined by converting the

inventory to CO2 equivalents (life cycle impact assessment,

LCIA).

The DayCent model was used to quantify changes in soil

organic carbon (SOC), N2O emissions, and NO3 leaching over

the crop production cycle. The DayCent biogeochemical emis-

sions were incorporated into the life cycle inventory (LCI)

model (Adler et al., 2007, 2012).

DayCent model description. The DayCent biogeochemical

model (Parton et al., 1998; Del Grosso et al., 2001), a daily time-

step version of the CENTURY model (Parton et al., 1994), was

used to estimate crop yields and evaluate changes in soil

organic carbon (SOC) and soil N2O emissions for the LCA.

Using daily weather, soil-texture class, and land-use inputs,

DayCent simulates crop production, soil organic-matter (SOM)

transformations, soil water and temperature dynamics, trace-

gas fluxes, and other ecosystem processes. Plant growth is con-

trolled by nutrient and water availability, temperature, and cul-

tivar-specific characteristics such as phenology, N

concentration of biomass components, and maximum growth

rate. SOM dynamics are a function of the quantity and quality

of biomass inputs, water, temperature and nutrient limitation,

tillage intensity, and soil properties related to texture. The

model simulates soil N2O emissions from nitrification and den-

itrification, as well as CH4 oxidation in drained soils. The abil-

ity of DayCent to simulate NPP, SOC stock changes, N2O

emissions, and NO3 leaching has been tested with data from

various native and managed systems (Del Grosso et al., 2012;

US EPA 2013). DayCent has been shown to reliably represent

plant growth and GHG fluxes for different biofuel cropping

systems, and the model has been successfully applied at the

site (Adler et al., 2007) and regional levels (Davis et al., 2012).

Daily weather data for Paysand�u and Bella Uni�on Uruguay

required to drive DayCent were acquired from the nearby INIA

weather station in Salto Grande (31°S 160 22″, 57°W 530 27″),
~120 km from both biorefinery locations. Soil texture data rep-

resentative of the locations were obtained from Altamirano

et al. (1976). The representative soil in Bella Uni�on for sweet

sorghum was a Typic Hapludert clay soil of the series Itapebi

Tres Arboles, while in Paysand�u for grain sorghum, it was a

Typic Argiudoll clay loam of the series San Manuel. Both soils

are common throughout the cropped areas of the Pampean

region of Uruguay and Argentina, very productive, high fertil-

ity and poorly drained especially the Hapludert, although poor

drainage is usually not a limiting factor because these soils are

located in rolling landscapes. Soil physical and hydraulic

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12462

CROP LEGACY AFFECTS N2O EMISSIONS ACCOUNTING 3



properties needed for model inputs were calculated from

texture class and Saxton et al.’s (1986) hydraulic properties

calculator (available online at http://www.bsyse.wsu.edu/sax

ton/soilwater).

Model outputs are sensitive to current SOC levels, which in

turn are influenced by previous vegetation cover and land

management. To acquire reasonable modern SOC levels, about

1950 years of native vegetation followed by plowing and about

60 years of cropping were simulated. Plow out of native grazed

grasslands was assumed to occur in the year 1951. Historically

accurate cropping systems were simulated, and improved culti-

vars, fertilizer applications, and tillage intensity were intro-

duced at appropriate times. From 1952 to 1975, corn–wheat

rotations were common, no N fertilizer was applied, and con-

ventional tillage was used. From 1976 to 2007, soybean was

introduced and included in the corn–wheat rotations and N

fertilizer applied; in response to soil degradation, pasture was

included in the crop rotation and no-tillage was adopted (Gar-

cia-Pr�echac et al., 2004).

DayCent model simulations. Simulations of changes in soil

N2O emissions and SOC fluxes using DayCent were performed

for the following crops: grain sorghum [Sorghum bicolor (L.)

Moench], oat [Avena sativa L.], pasture, ryegrass [Lolium L.],

sweet sorghum [Sorghum bicolor (L.) Moench], soybeans (Gly-

cine max Merr.), and winter wheat (Triticum aestivum L.). The

pastures contain a mixture of grasses (fescue, ryegrass) and

legumes (white clover, red clover, sometimes alfalfa) with a

low C/N ratio. The modeled rotations were developed by

regional experts and are described in Table 3. They include a

Fig. 1 Description of cropland in Uruguay and location of ethanol biorefineries in Paysand�u and Bella Uni�on (DIEA, MGAP, 2015).

Table 1 Biorefinery feedstock requirements and production capacity

Biorefinery

location Crop

Crop

contribution* (%)

Biorefinery capacity†

(m3 yr ha�1 yr�1)

Feedstock requirement‡

(Mg yr ha�1 yr�1)

Bella Uni�on Sweet sorghum 5 30 000 410 000

Sugarcane 95

Paysand�u Grain sorghum 100 70 000 156 600

*% of ethanol produced from crop.

†Total ethanol production capacity of biorefinery.

‡Total amount of feedstock required as stalks for sweet sorghum and sugarcane and grain for grain sorghum.
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baseline rotation which describes a typical crop rotation prior

to expansion of bioenergy crop production in the area, and a

paired bioenergy crop rotation. Both the baseline and bioen-

ergy crop rotations included scenarios with and without a

three-year pasture component, for both grain and sweet sor-

ghum. The grain sorghum scenario without pasture and the

sweet sorghum scenario with pasture would probably be more

typical for the regions, but a change in commodity prices could

move rotations toward or away from increased grain or pasture

in the rotation.

DayCent simulations were run for 36 years following initia-

tion of these rotations. Outputs for carbon (C) and nitrogen (N)

fluxes between the atmosphere, vegetation, and soil were then

used as inputs into the crop production LCI model to estimate

the global warming intensity (GWI) of feedstocks for energy

use (Adler et al., 2012). The direct N2O was the mean annual

N2O emissions over the simulation period. To calculate indirect

N2O, we combined DayCent outputs for NO3 leached and N

volatilized with IPCC (de Klein et al., 2006) methodology. IPCC

(de Klein et al., 2006) methodology assumes that 0.75% of NO3-

N leached is eventually denitrified to N2O-N in water ways

and that 1% of volatilized N (NOx + NH3) is deposited on soil

and converted to N2O. N2O emissions were converted to CO2e

by assuming that its global warming potential is 298 times that

of CO2 on a mass basis (Forster et al., 2007).

IPCC Tier 1 greenhouse gas estimations. The Tier 1 method

for soil N2O emissions assumes that fixed portions of N addi-

tions to soil from fertilizer, manure, and crop residues not

removed during harvest operations are converted to direct and

indirect emissions. We used the default direct N2O factor of 1%

for synthetic fertilizer and crop residues for the cropped por-

tion of the rotations and the default 2% for manure deposited

by grazing animals during the pasture portion of the rotations.

We also used the default indirect factors from IPCC (de Klein

et al., 2006) and summed to obtain total N2O emissions. For

SOC stock changes, the Tier 1 method estimated an initial SOC

stock of 8800 g C m�2 given the soil types and climate for the

sites in Uruguay. We then applied the default SOC stock

change factors based on land-use change as described in IPCC

(de Klein et al., 2006) and calculated annual SOC changes by

assuming that SOC stocks would obtain equilibrium after

20 years of consistent land use.

Description of LCI and LCIA. DayCent output data on

changes in SOC and N2O were combined with a life cycle

inventory (LCI) model for the selected biomass feedstocks con-

verted to ethanol. Crop yield output from DayCent was

expressed as g C m�2 yr�1 and converted to MJ ha�1 assuming

biomass feedstock was 43.5% carbon (Brown, 2003), ethanol

yield was 442 and 216 L ethanol Mg�1 feedstock for grain and

sweet sorghum, respectively (Table 4). The lower heating value

of ethanol (21.2 MJ L�1) was used for all life cycle calculations.

The LCI model follows ISO 14040 (2006) procedures and

includes the fuel production (feedstock production, transport,

fuel conversion, fuel distribution) and use (combustion) cycles

(Fig. 2). Life cycle GHG emissions include transportation and

field application of nutrients and farming operations specific to

the crop rotation. Coproducts compared among the ethanol

pathways were treated using system expansion crediting (ISO,

2006) and those credits depended on the rotation. For example,

in the case of grain sorghum, the distillers dried grains and sol-

ubles (DDGS) coproduct was assumed to displace soybean

meal on the market similar to other DDGS coproducts derived

from starch-based dry grind processes. In the case of sweet sor-

ghum, the annual production of surplus electricity (1452 MWh)

Table 2 Description of the crop production sites simulated

with the DayCent biogeochemical model in Uruguay

Crop

MAP

(mm)

MAT

(°C) Soil texture GDD Tillage*

Sweet

sorghum

1424 18.7 Clay 6007 No till

Grain

sorghum

1424 18.7 Clay loam 6007 No till

Notes: Key to abbreviations: MAP, mean annual precipitation;

MAT, mean annual temperature; GDD, growing degree days.

*Type of tillage prior to crop establishment.

Table 3 Description of crop rotations simulated with DayCent

Crop Rotation

Year 1 Year 2 Year 3

Winter Summer Winter Summer Winter Summer

Sweet sorghum Baseline* Oat Soybean Ryegrass Grain sorghum Ryegrass Soybean

Sans pasture Oat Sweet sorghum Ryegrass Sweet sorghum Ryegrass Soybean

Baseline†‡ Oat Soybean Ryegrass Grain sorghum Ryegrass Soybean

Pasture‡ Oat Sweet sorghum Ryegrass Sweet sorghum Ryegrass Soybean

Grain sorghum Baseline* Wheat Soybean Wheat Soybean Ryegrass Soybean

Sans pasture Wheat Soybean Wheat Grain sorghum Ryegrass Soybean

Baseline†‡ Wheat Soybean Wheat Soybean Ryegrass Soybean

Pasture‡ Wheat Soybean Wheat Grain sorghum Ryegrass Soybean

*Baseline sans pasture.

†Baseline pasture.

‡The first three years of the rotation are followed by three years of pasture.

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12462
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produced was assumed sold to Uruguay’s electricity market

and would displace marginal fuel sources for electricity within

the existing electricity mixture, which consist of fuel oil that is

used on top of hydroelectric and biomass sources of baseload

power. Life cycle impact assessment (LCIA) was undertaken

following ISO 14040 (2006) standards to estimate the GWI of

the ethanol produced and compared to the GWI of gasoline

(93 g CO2e MJ�1) as documented by US EPA (2010) and

includes end use in a light-duty internal combustion vehicle.

The GWI of feedstock production was calculated using 2007

IPCC 100a weighting factors for the individual greenhouse

gases (Forster et al., 2007) and summed over the cradle-to-

farm-gate life cycle. The LCI model for ethanol produced from

grain and sweet sorghum was constructed using SimaPro 8

software (PRe’ 2015) using existing datasets for select agricul-

tural operations (e.g., feedstock harvest, nutrient replacement)

that were parameterized with data collected in Uruguay, and

biorefinery operations data from Uruguayan industry (Alur

and ANCAP), supplemented with data from literature (e.g.,

Gnansounou et al., 2005; Nghiem et al. 2011) that were parame-

terized for biorefinery scales in Uruguay. Life cycle GWI contri-

butions from crop production, biorefinery operations,

transportation, and vehicle in-use emissions for 100% ethanol

produced from sweet sorghum (Table S1) and grain sorghum

(Table S2) are in the Supporting Information.

Description of cost and GHG abatement analysis

To test the performance of abating GHGs through introducing

grain and sweet sorghum into Uruguay’s transport fuel market,

the majority of which is owned by the Uruguayan government,

we calculated the GHG abatement costs for displacing gasoline.

Production costs. We estimated the unit production cost of

ethanol from grain and sweet sorghum. For grain sorghum to

ethanol, costs included the capital investment of $180 million,

depreciated over 10 years using straight line depreciation; feed-

stock and operating variable costs; and fixed variable costs

(labor, general overhead, maintenance, and insurance and

taxes) using data for corn dry grind facilities (Iowa State

University 2015). Grain sorghum feedstock costs were taken

from 2015 commodity prices (USDA-NASS 2015).

The cost of producing sweet sorghum to ethanol did not

include depreciated capital equipment because existing facilities

from the Bella Union sugarcane processing plant are used. The

feedstock production cost in Uruguay was calculated to be

$1143 ha�1, which is slightly higher than costs reported for U.S.

production in Texas, $712 ha�1 (Amosson et al., 2011), and

North Carolina, $1023 ha�1 (Veal et al., 2014), and the cost of

transporting the feedstock to the biorefinery was estimated to be

$7.70 Mg�1, assuming a transportation distance of 70 km and

freight transportation cost of $0.11 Mg-km�1 (Inter-American

Development Bank 2015). Operating variable costs and fixed

variable costs (labor, general overhead, maintenance, and insur-

ance and taxes) were estimated using data from Gnansounou

et al. (2005) and scaled to the Bella Union capacity of

30 000 Mg yr�1 sorghum feed. All costs were assumed to be in

2015 US$. A sensitivity analysis on costs was performed to esti-

mate the range of ethanol unit production costs and used for the

abatement cost calculation. Tables S3 and S4 in the Supporting

Information summarize the production cost and sensitivity anal-

ysis parameter settings for ethanol production from grain sor-

ghum and sweet sorghum, respectively.

Abatement costs. We estimated the GHG abatement cost of

grain and sweet sorghum ethanol pathways relative to gasoline

using Eqn 1 and included low and high ranges to evaluate cost

sensitivity.

Data on the assumed average, low, and high costs for grain

sorghum to ethanol and sweet sorghum to ethanol are summa-

rized in the Supporting Information Tables S1 and S2. The

average wholesale price of gasoline by refiners from January

2013 to June 2015 from (EIA 2015) was used ($0.56 L�1;

$20.64 GJ�1), and the GWI for gasoline was assumed to be 93 g

CO2e MJ�1 (US EPA 2010).

Results

Crop yields and available crop residue

Grain and sweet sorghum yields were similar in both

rotations with and without pasture (Table 4). Although

the ethanol yields were more than double per unit yield

for grain sorghum, dry wt. yields (stem vs. grain) were

more than 2.5 times greater for sweet sorghum; the

resulting ethanol yields per hectare were >20% higher

for sweet sorghum.

Greenhouse gas emissions and nitrogen dynamics

Greenhouse gas emissions varied with both crop and

rotation (Table 5). Total N2O emissions were higher

than the baseline for both sweet and grain sorghum; a

small reduction in nitrate leaching led to lower indirect

N2O emissions, but these were small relative to direct

N2O emissions. The change in both N2O emissions and

soil carbon were lower for both the sweet and grain sor-

ghum rotation with pasture relative to the rotation with-

out pasture.

Cumulative N2O emissions varied with crop and rota-

tion. There was a legacy effect following the pasture,

whether that period was fallow (Fig. 3) or had crops

GHG abatement cost ¼ � Unit production cost of ethanol�Unit production cost gasoline

Unit GWI ethanol�Unit GWI gasoline

� �
ð1Þ
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planted (Fig. 4), N2O emissions were higher. The effect

of pasture on the intensity of N2O emissions following

pasture increased with proximity; N2O emission inten-

sity was higher for oats and wheat which were nearer

in time to pasture than sweet sorghum or soybeans,

but were still higher for these crops in rotations with

pasture.

Nitrogen inputs and outputs varied between grain and

sweet sorghum and the presence of pasture in the rota-

tion (Table 6). More N fertilizer was added to the grain

sorghum rotation, whereas N fixation varied with the

presence of pasture and frequency of soybean in the rota-

tion. However, both N mineralization and manure/urine

inputs were highest in rotations with pasture. Nitrogen

output was highest in rotations with grain sorghum,

while grazed N and gaseous N losses where highest in

rotations with pasture. Pastures were an important

source of internally cycled N leading to large difference

in net N input.

Greenhouse gas emissions on a life cycle basis

Both the direction of change between the rotations and

quantity varied within and between ALCA and CLCA

methods for Tier 1 and Tier 3 methods. Using ALCA

methods, Tier 3 N2O emission estimates were higher

T
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Ag machinery
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Feedstock
produc�on
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Fig. 2 System boundary for Uruguay’s sorghum-to-ethanol pathways. Abbreviations: transportation (T); distribution (D); chemical

inputs included GHG emissions associated with production of both fertilizers and pesticides; Ag machinery included GHG emissions

associated with fuel use from tillage, planting, chemical application, and harvest; N2O emissions were from soil and were always pos-

itive in contrast to SOC (soil organic carbon) which increased or decreased depending on the rotation.

Table 4 Crop plant and ethanol yield (dry wt. basis) over 36-year DayCent simulation period. Values are means with standard error

in parentheses

Crop Rotation Yield* (Mg ha�1) Biomass† (Mg ha�1)

Crop residue‡

(Mg ha�1)

Ethanol yield§

(L Mg�1)

Ethanol yield§

(L ha�1)

Sweet sorghum Sans pasture 10.28 16.83 (0.23) 6.55 216 2225

Pasture 10.29 16.85 (0.82) 6.55 216 2228

Grain sorghum Sans pasture 4.07 (0.31) 8.15 4.07 442 1802

Pasture 4.04 (0.47) 8.08 4.04 442 1786

*DayCent simulated crop yields, both grain (grain sorghum) and stem (sweet sorghum) yields are expressed as dry wt. Stem yields

were about 75% of total biomass; grain, leaves, and 16.7% of stems for sweet sorghum were returned to the soil at harvest as occurs

in commercial operations.

†Sweet and grain sorghum biomass included stems, leaves, and grain.

‡Amount of biomass returned to the soil with harvest.

§Ethanol yields are expressed on a dry wt. basis.

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12462
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than Tier 1, ~1.7 to >2.3 times higher for sweet sorghum

and ~1.5 to 1.65 times higher for grain sorghum

(Table 7). While N2O emissions were similar between

rotations within both Tier 1 and Tier 3 methods for

grain sorghum, for sweet sorghum, they were lower

with pasture for both Tier 1 and Tier 3 methods. ALCA

methods only consider N2O emissions during the

growth of the target crop (i.e., grain and sweet sor-

ghum), in contrast to CLCA which considers change.

With CLCA methods considering the change from a

baseline, for grain sorghum N2O emissions increased

with pasture in the rotation, while for sweet sorghum

N2O emissions decreased, and Tier 3 were higher than

Tier 1 estimates (Table 7).

All crop rotation scenarios produced ethanol with a

lower GWI than gasoline (Table 8). Using ALCA meth-

ods, GWI estimates for Tier 3 were higher than Tier 1,

while using CLCA methods, they tended to be lower.

All but three crop rotation scenarios reduced the GWI

by more than 50% compared with gasoline, and the

three exceptions still reduced the GWI by more than

~40%. Sweet sorghum mostly had a lower GWI than

grain sorghum using CLCA but higher using ALCA

methods.

GHG abatement costs

On a life cycle basis, all sugar/starch crops for ethanol

production maintain a low life cycle GWI largely due to

the already low GWI of Uruguay’s electricity grid,

which is comprised of on average 50% renewable/low-

carbon energy (Fig. 5). In particular, the sweet sorghum

pathways, whether assessed using consequential or

attributional frameworks had consistently lower life

cycle GWI compared to grain sorghum pathways. More-

over, the cost estimates (Tables S3 and S4) show that

grain sorghum-to-ethanol unit costs ($32.70 GJ�1 +36%/

�14%) are also higher than those of sweet sorghum to

ethanol ($19.60 GJ�1 +11%/�64%), which is marginally

lower than that of gasoline ($20.70 GJ�1; $0.67 L�1 gaso-

line). This higher cost the grain sorghum-to-ethanol pro-

cess is largely due to the capital equipment costs of the

Table 5 Annual changes in soil nitrogen and carbon dynamics influenced by sorghum crop rotation compared with baseline without

sorghum. Values are means with standard error in parentheses

Crop Rotation

Direct N2O

(kg CO2e

ha�1 yr�1)

Indirect N2O

(kg CO2e

ha�1 yr�1)

Total N2O

(kg CO2e

ha�1

yr�1)

Soil organic

carbon

(kg C ha�1

yr�1)

Leached N

(kg N ha�1

yr�1)

Mineralized

N (kg N ha�1

yr�1)

Soil organic

N (kg N ha�1

yr�1)

Sweet

sorghum

Sans pasture 464 (65) �18 (3) 447 (66) 109 (35) �0.5 (0.1) 25.2 (3.8) 8.7 (2.3)

Pasture 18 (54) �13.2 (4) 5 (57) 8 (40) �1.2 (0.3) 10.7 (2.2) 90 (6.6)

Grain

sorghum

Sans pasture 303 (37) 14 (3) 317 (39) 52 (9) 4.4 (1.3) �16.2 (6.1) 6.2 (3.1)

Pasture 184 (33) 12 (5) 196 (36) 27 (14) 3.1 (1.5) �6.4 (6.3) 89.3 (5.9)

Fig. 3 Fallow period direct N2O emissions and duration. Base-

line sans pasture (†); baseline pasture (‡); direct N2O emissions

(kg CO2e ha�1 day�1) from DayCent (§).

Fig. 4 Total direct N2O emissions during crop production.

Baseline sans pasture (†); baseline pasture (‡); direct N2O emis-

sions (kg CO2e ha�1 cycle�1) from DayCent; emissions are

averaged over the length of a rotation cycle (§).

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12462
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dry grind facility, unlike the sweet sorghum facility,

whose capital costs are assumed fully depreciated due

to being added to the existing sugarcane facility in Bella

Union (Table 2). When evaluated as substitutes for

gasoline, on average, sweet sorghum-to-ethanol results

in negative GHG abatement cost as a result of its lower

Table 6 Annual quantity and sources of nitrogen inputs and outputs in crop rotations

Crop Crop rotation

N inputs

Fertilizer N Fixed N Total external N Mineralized N Manure/urine N Total internal N Total N

kg N ha�1 yr�1

Sweet

sorghum

Baseline 30.0 125.1 155.1 103.3 0.0 103.3 258.5

Sans pasture 66.7 65.3 131.9 128.5 0.0 128.5 260.4

Baseline 27.7 130.3 158.0 192.2 109.4 301.6 459.6

Pasture 29.3 106.2 135.5 202.9 110.3 313.3 448.8

Grain

sorghum

Baseline 66.7 109.0 175.7 130.3 0.0 130.3 305.9

Sans pasture 96.7 76.9 173.6 114.0 0.0 114.0 287.6

Baseline 36.0 93.0 129.0 242.2 141.4 383.7 512.7

Pasture 51.0 75.4 126.4 235.8 144.6 380.5 506.8

Crop Crop rotation

N outputs

Grain N Straw N Grazed N Gaseous N Leached N Total N Net N input* Net N input†

kg N ha�1 yr�1

Sweet sorghum Baseline 112.8 0.0 0.0 36.4 1.2 150.4 4.7 108.1

Sans pasture 49.5 52.4 0.0 37.3 0.7 140.0 �8.0 120.4

Baseline 62.6 0.0 128.7 82.4 4.5 278.2 �120.2 181.5

Pasture 26.9 27.8 129.8 78.7 3.3 266.6 �131.1 182.2

Grain sorghum Baseline 172.9 0.0 0.0 16.9 8.8 198.6 �23.0 107.3

Sans pasture 159.3 0.0 0.0 17.8 13.2 190.3 �16.7 97.3

Baseline 91.2 0.0 166.4 41.3 12.3 311.2 �182.2 201.5

Pasture 81.0 0.0 170.2 42.2 15.4 308.9 �182.5 197.9

*Net N input includes total external N input and total N output.

†Net N input includes both total external and internal N inputs and total N outputs.

Table 7 Changes in soil N2O emissions and soil carbon per unit ethanol produced relative to the baseline of no grain or sweet

sorghum

Crop Crop rotation

Tier 1 Tier 3*

Direct N2O

Indirect

N2O Total N2O ΔSoil carbon Direct N2O

Indirect

N2O Total N2O

ΔSoil

carbon

g CO2e MJ�1

Attributional LCA

Sweet sorghum Sans pasture 27.9 7.9 35.8 — 59.9 0.1 60.0 —

Pasture 19.2 5.1 24.3 — 56.3 0.4 56.7 —

Grain sorghum Sans pasture 16.4 4.8 21.2 — 29.0 2.5 31.5 —

Pasture 16.5 4.8 21.3 — 31.7 3.5 35.2 —

Consequential LCA

Sweet sorghum Sans pasture 10.9 3.3 14.2 0.0 23.8 �0.9 22.8 20.0

Pasture 4.0 1.0 4.9 0.0 1.8 �1.3 0.5 1.3

Grain sorghum Sans pasture 5.4 2.3 7.7 18.7 23.4 1.1 24.5 14.6

Pasture 10.0 3.3 13.3 37.7 28.6 1.9 30.5 15.6

Notes: Attributional LCA, total N2O emissions during crop production cycle; consequential LCA, the difference in N2O emissions

between crop rotations with the introduction of grain or sweet sorghum compared with the crop rotation if these bioenergy crops had

not been grown.

*DayCent simulated crops, N2O emissions, and soil carbon.

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12462
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GWI and average and low unit cost relative to gasoline.

The production cost of sweet sorghum to ethanol is sen-

sitive to the electricity coproduct selling price (Table S4).

When the wholesale electricity selling price is low

($0.06 kWh�1), the sweet sorghum pathway yields a

slightly positive abatement cost. However, when electric-

ity sells at peak price ($0.24 kWh�1), the facility can sell

its coproduct at a higher market price, reducing the mar-

ginal production cost of the ethanol product ($6.97 GJ�1;

$0.15 L�1) and achieving a low negative (cost savings)

GHG abatement cost. Grain sorghum has a positive

abatement cost even at the low end of the sensitivity

analysis when unit costs are lowest. This is due to the

accumulation of amortized capital costs and operating

costs, which are not offset enough by revenues from sale

of DDGS coproducts to compete with gasoline market

prices ($20.70 GJ�1). Even at high gasoline market prices,

which between 2013 and 2015 were up to $0.80 L�1

($24.66), grain sorghum production costs are still higher

and result in positive abatement costs.

Discussion

Crop yields and available crop residue

Crop yields can have an important impact on system

economics with production scale yield estimates often

lower than in small research plot yield trials; we used

average commercial field scale yields for the biorefinery

in our analysis (Table 4), ~70% of small plot yield trials

for sorghum in Uruguay (http://www.mgap.gub.uy;

http://www.inia.uy/en). The modeled grain and sweet

sorghum yields are typical of the regions near Paysand�u

and Bella Uni�on Uruguay, respectively, where these

crops are grown. Farmers using better management on

more productive lands could see higher yields, with

improved economics and reduced GHG emissions.

The frequency of pasture in grain crop rotations var-

ies with commodity prices, farmer sense of risk, soil

conservation regulations, and proximity to the biorefin-

ery and port to reach export markets. Including

Table 8 Global warming intensity of ethanol produced from grain and sweet sorghum

Crop Crop rotation

Attributional LCA Consequential LCA

IPCC Tier 1 IPCC Tier 3* IPCC Tier 1 IPCC Tier 3*

g CO2e MJ�1

Sweet sorghum Sans pasture 34.2 58.5 12.6 41.2

Pasture 19.7 52.0 0.2 �2.9

Grain sorghum Sans pasture 19.9 30.3 25.1 37.8

Pasture 20.0 33.9 49.8 44.9

Δ%†

Sweet sorghum Sans pasture �63 �37 �86 �56

Pasture �79 �44 �100 �103

Grain sorghum Sans pasture �79 �67 �73 �59

Pasture �78 �64 �46 �52

Notes: Attributional LCA, total N2O emissions during crop production cycle; consequential LCA, the difference in N2O emissions

between crop rotations with the introduction of grain or sweet sorghum compared with the crop rotation if these bioenergy crops had

not been grown.

*DayCent simulated crops, N2O emissions and soil carbon.

†The % change in greenhouse gases compared with the baseline of using gasoline to power the car and light truck fleet at 93 g

CO2e MJ�1.
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Fig. 5 Greenhouse gas abatement costs for ethanol life cycle

pathways derived from sweet sorghum and grain sorghum

under different crop rotations using average ethanol produc-
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pastures in crop rotations can reduce soil erosion and N

inputs and losses and increase crop yields and soil car-

bon (Sanderson et al., 2013; Sulc & Franzluebbers, 2014).

In periods of high commodity prices, increased fre-

quency of soybeans and grain sorghum in crop rotations

near Paysand�u would occur. In contrast, low commod-

ity prices can lead to a shift toward increased pasture.

Although pasture may not improve economics relative

to grain even during times of low commodity prices, it

potentially reduces the risk of crop failure (USDA-

NRCS 2004). Consequently, the frequency of grain crops

in the rotation would be expected to vary with com-

modity prices rather than there being an effect of

increased bioenergy crop production. In addition to

commodity prices, proximity to a good port for export

to world grain markets also influences the frequency of

grain crops and pasture in the rotation. While Paysand�u

has good access to a port to reach export markets, Bella

Uni�on is more remote so generally grain crops are more

common near Paysand�u, while pasture is more common

near Bella Uni�on. Winter double and cover crops are

becoming common in Uruguay with wheat more com-

mon near Paysand�u and oats and ryegrass near Bella

Uni�on. Because increased bioenergy crop production is

not expected to affect the frequency of pasture in the

rotation, while the frequency of grain commodities is

expected to vary for reasons previously described, sce-

narios with increased pasture and grains in the rotation

were evaluated while varying synchronously between

the baseline and bioenergy crop rotations.

Greenhouse gas emissions and nitrogen dynamics

The identity of crops in the rotation can have a signifi-

cant effect on GHG emissions, due to changes in system

N with inputs/outputs and changes in crop rotation

productivity affecting carbon inputs/outputs. The inclu-

sion of pasture in the rotation had the most significant

effect on N2O emissions both due to changes to N

inputs/outputs and residual effects on subsequent

crops. Although external N inputs did not appear to be

correlated with N2O emissions, the high internal N

cycling from both N mineralization and manure/urine

inputs with grazing cattle in pastures did correlate well

with N2O emissions. In spite of N outputs also being

higher mainly from N consumed with forage and gas-

eous N emissions, net N inputs were also higher when

internal cycling was included. An important point to

note is that a portion of N consumed by grazing cattle

is recycled as manure and urine back to the pasture

rather than being removed from the system. This model

behavior is consistent with observations that nitrifica-

tion rates and N2O emissions are often more highly cor-

related with N turnover rates than with soil ammonium

concentrations (Parton et al., 1996). In a previous Day-

Cent simulation based in the USA, we observed that

N2O emissions were correlated with N mineralization

in a corn–soybean rotation both with and without win-

ter double crops (Adler et al., 2015).

N2O emissions varied over the crop rotation cycle

due to direct effects of crops, the number of times speci-

fic crops were planted in the six-year rotation, and the

legacy effects on subsequent crops. To separate the indi-

vidual effects of crops on cumulative rotation N2O

emissions, we quantified the daily N2O emissions dur-

ing the fallow period, as well as the annual duration

(Fig. 3) and the N2O emissions of each crop cycle in the

rotations (Fig. 4). N2O emissions during the fallow per-

iod were higher when pasture was in the rotation due

to greater intensity of N2O emissions, especially in the

sweet sorghum rotation (Fig. 3). Greater N2O emissions

were not due to a longer fallow period; the fallow per-

iod was longer without pasture in the grain sorghum

rotation and mixed in the sweet sorghum rotation

(Fig. 3). The period following pasture was most affected

by its presence in the rotation. N2O emissions intensity

increased by a factor of almost 10 with oats following

pasture in the sweet sorghum rotation and ~1.5 with

wheat following pasture in the grain sorghum rotation

(Fig. 4). The pasture effect on N2O emissions intensity

in wheat may have been muted by it occurring twice in

the rotation with the second occurrence following soy-

beans. The N2O emissions during the bioenergy crop

production period was also affected by the presence of

pasture due to the legacy effects, sweet sorghum in the

rotation with pasture was about 1.6 times higher, while

grain sorghum was only about 1.1 times higher than the

rotation without pasture. Other differences in N2O

emission intensity with specific crops were more subtle.

The accounting error, if using Tier 1 rather than Tier

3 accounting methods, was significant in this study for

sweet sorghum, where the GWI from total N2O emis-

sions was >30% lower with pasture when using Tier 1,

but similar and only ~5% lower using Tier 3 methods.

This occurred due to legacy effects of legumes in the

pasture being captured with Tier 3 and not with Tier 1

methods, where the sweet sorghum following pasture

had a lower requirement for N fertilizer due to the ‘N

credit’ from the pasture. Although there is a large range

of uncertainty around N2O estimates (Del Grosso et al.,

2008), this would not affect the presence of legacy N in

multiple crop rotations.

The quantity and quality of carbon inputs from crop

residue and roots relative to the previous rotation or the

baseline rotation will affect the direction of change in

soil carbon. Both with and without pasture in the rota-

tion SOC decreased in sweet sorghum and increased in

grain sorghum rotations relative to the baseline

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12462
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(Table 5). The direction of change in SOC was consistent

with C inputs, with C inputs being lower for sweet sor-

ghum and higher for grain sorghum rotations relative

to the baseline. Garcia-Pr�echac et al. (2004) observed

that the soil had a significant effect on the direction of

change in soil carbon with pasture in the rotation

observing both increases and decreases in SOC.

Greenhouse gas emissions on a life cycle basis

Selection of a baseline rotation for scenario analysis is

the most significant factor affecting results when CLCA

methods are used and may be the most uncertain com-

ponent of the LCA, with growing uncertainty expected

in factors related to crop rotation and management to

be implemented in the future. This aspect is consistent

with what Plevin et al. (2014) describe regarding scenar-

ios explored through CLCA and is also relevant to cases

in ALCA where land use is a dominant factor (Soima-

kallio et al., 2015). Although regional factors affect the

portfolio of crops grown, commodity prices have a sig-

nificant effect on farmer choices and these are hard to

predict from year to year, let alone over a 20–30-year
timeframe commonly used in biofuel LCAs. Although

economic models are commonly suggested to address

this issue (Khanna & Crago, 2012), and those models

are suggested as inputs into CLCAs [see Earles & Halog

(2011) and Earles et al. (2012) for an example application

in the forestry sector], their results are driven by under-

lying assumptions of commodity prices, which also host

much uncertainty as a means of representing conse-

quential change, an artifact that is also inherent in the

socioeconomic complexity described by Suh & Yang

(2014) and Hertwich (2014). In this study, we relied on

local agricultural commodity experts to define the rota-

tions and one would not expect economic models to sig-

nificantly improve the certainty of a baseline choice.

Implications of Tier 1 and 3 GHG estimation with ALCA
and CLCA methods

ALCA methods are the most commonly used in GHG

LCAs; however, they are not able to capture the change in

GHG emissions attributable to bioenergy feedstock

demand, an important prerequisite for carbon markets.

This gives rise to the need to establish a ‘business as

usual’ scenario without bioenergy feedstocks, and an ‘an-

ticipated baseline’ counterfactual scenario that incorpo-

rates the increased demand for bioenergy feedstock used

with CLCA methods. However, baselines required to

measure additionality can be highly uncertain, especially

when predicting future outcomes. We assumed that

bioenergy crops did not affect the presence of pasture in

the rotation; that instead rotations were influenced more

by commodity prices and proximity to ports; therefore,

the presence of pasture was in synchrony between the

baseline and bioenergy crop rotation.

We come to the following conclusions when compar-

ing and contrasting LCA and N2O estimation methods.

First, within an attributional LCA framework, using

IPCC Tier 1 methods to estimate N2O emissions for a

single crop within a multiple crop rotation can result in

an accounting error because it assumes that residue N

cycles completely during that crop year, ignoring legacy

effects of residue decomposition between years, which

is especially important when the preceding crop is a

legume. Legacy effects are greatest immediately follow-

ing the crop having the effect, in this case pasture with

legumes. Therefore, we saw a greater effect on sweet

sorghum than grain sorghum when using Tier 1 LCA

methods than Tier 3. Second, the choice of baseline and

crop identity in rotations evaluated within the CLCA

framework both affect the GWI of ethanol. Understand-

ing the uncertainty of the baseline is important when

applying CLCA methods and may be more uncertain

than IPCC methods for quantifying GHG emissions.

Although there is a perception that CLCA methods offer

a means of capturing the environmental impacts result-

ing from changes or introductions of technology or poli-

cies, they cannot overcome the uncertainty that comes

with modeling unknown future trajectories, including

how a ‘baseline’ is defined, an argument raised by Ple-

vin et al. (2014). Not only does the baseline choice affect

the GWI, but so can the identity of crops in the rotation

due to the legacy effects that can carry over to crops fol-

lowing in the rotation. Finally, ethanol produced from

both grain and sweet sorghum reduced the GWI >50%
relative to gasoline in >80% of the scenarios (all but

three crop rotation scenarios). The U.S.’s national

renewable fuel standard classifies advanced fuels,

including ethanol fuel made from noncorn feedstocks,

as those having a GWI that is at least 50% lower than

that of gasoline. While Uruguay’s alternative fuel poli-

cies aim to incentivize domestic fuel production rather

than a carbon reduction target, this analysis shows cli-

mate change mitigation benefits from their investment

in grain and sweet sorghum processing technology.

However, production costs are high for grain sorghum

and on average low for sweet sorghum, subject to elec-

tricity peak pricing, compared to gasoline. Although the

Uruguayan government has specifically not imple-

mented a subsidy (or a carbon tax on gasoline) to

recover the shortfall between grain sorghum–alcohol
production costs and gasoline, ethanol selling prices in

Uruguay have been as high as $1.80 L�1 ($85 GJ�1),

which allows cost recovery for both sorghum-to-ethanol

pathways and in such market conditions renders each

negative (cost saving) in GHG cost abatement.

© 2017 The Authors. Global Change Biology Bioenergy published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12462
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