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ABSTRACT

The objectives of this study were to develop and 
evaluate an efficient implementation in the computa-
tion of the inverse of genomic relationship matrix with 
the recursion algorithm, called the algorithm for proven 
and young (APY), in single-step genomic BLUP. We 
validated genomic predictions for young bulls with 
more than 500,000 genotyped animals in final score for 
US Holsteins. Phenotypic data included 11,626,576 fi-
nal scores on 7,093,380 US Holstein cows, and geno-
types were available for 569,404 animals. Daughter de-
viations for young bulls with no classified daughters in 
2009, but at least 30 classified daughters in 2014 were 
computed using all the phenotypic data. Genomic pre-
dictions for the same bulls were calculated with single-
step genomic BLUP using phenotypes up to 2009. We 
calculated the inverse of the genomic relationship ma-
trix GAPY

−( )1  based on a direct inversion of genomic rela-
tionship matrix on a small subset of genotyped animals 
(core animals) and extended that information to non-
core animals by recursion. We tested several sets of core 
animals including 9,406 bulls with at least 1 classified 
daughter, 9,406 bulls and 1,052 classified dams of bulls, 
9,406 bulls and 7,422 classified cows, and random 
samples of 5,000 to 30,000 animals. Validation reliabil-
ity was assessed by the coefficient of determination 
from regression of daughter deviation on genomic pre-
dictions for the predicted young bulls. The reliabilities 
were 0.39 with 5,000 randomly chosen core animals, 
0.45 with the 9,406 bulls, and 7,422 cows as core ani-
mals, and 0.44 with the remaining sets. With pheno-
types truncated in 2009 and the preconditioned conju-

gate gradient to solve mixed model equations, the 
number of rounds to convergence for core animals de-
fined by bulls was 1,343; defined by bulls and cows, 
2,066; and defined by 10,000 random animals, at most 
1,629. With complete phenotype data, the number of 
rounds decreased to 858, 1,299, and at most 1,092, re-
spectively. Setting up GAPY

−1  for 569,404 genotyped ani-
mals with 10,000 core animals took 1.3 h and 57 GB of 
memory. The validation reliability with APY reaches a 
plateau when the number of core animals is at least 
10,000. Predictions with APY have little differences in 
reliability among definitions of core animals. Single-
step genomic BLUP with APY is applicable to millions 
of genotyped animals.
Key words: final score, genomic relationship matrix, 
genomic evaluation

INTRODUCTION

Single-step genomic BLUP (ssGBLUP) is a tool for 
genomic evaluations (Aguilar et al., 2010; Christensen 
and Lund, 2010). The method has numerous advan-
tages over multistep methods: simplicity, avoidance of 
double counting, and resistance to biased prediction 
caused by preselection of young animals (Patry and 
Ducrocq, 2011; Vitezica et al., 2011; VanRaden and 
Wright, 2013; Legarra et al., 2014). In this method, 
mixed model equations contain the inverse of a genomic 
relationship matrix (G). The cost of inversion and the 
storage of the inverse are proportional to the cubic and 
quadratic of the number of genotyped animals (ng), 
respectively. Therefore, the large computing cost is a 
limiting factor in an application of ssGBLUP to an ac-
tual population with a large number of genotyped ani-
mals such as the US Holsteins with more than 900,000 
genotyped animals (https://www.cdcb.us/Genotype/
cur_density.html).
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Misztal et al. (2014) suggested calculating a sparse 
inverse of G with an algorithm for proven and young 
animals (APY) based on recursive equations. We will 
refer to the inverse from this algorithm as the GAPY

−1  
compared with the regular G−1. Initial studies used the 
term proven for the starting animals and the term 
young for the younger animals in the genomic recur-
sions, thus the name “algorithm for proven and young.” 
Subsequent research (Fragomeni et al., 2015) showed 
that it is not necessary to order animals by age, where-
by a smaller number of core animals can be used in the 
direct inversion and recursion used on the noncore ani-
mals.

In the algorithm in this study, genotyped animals 
were divided into 2 groups: core and noncore, which 
were labeled as proven and young, respectively, in the 
earlier studies. In the GAPY

−1 , off-diagonal elements cor-
responding to relationships among noncore animals are 
set to be 0, which can reduce the amount of computa-
tions and memory. Fragomeni et al. (2015) reported 
that the computing cost and storage size for GAPY

−1  could 
be only 0.3 and 8% of those required in the regular G−1, 
respectively, when ng was 500,000 and the number of 
core animals was 20,000.

With at least 10,000 core animals, the GAPY
−1  provided 

genomic EBV (GEBV) that were very similar to ge-
nomic evaluations from the regular G−1 for US Hol-
steins (Fragomeni et al., 2015) and American Angus 
(Lourenco et al., 2015). The previous studies focused on 
the feasibility of APY, and an efficient computing was 
not a priority. The objectives of this study were (1) to 
develop an efficient implementation in the computation 
of GAPY

−1  and evaluate the computational costs and (2) 
to validate genomic predictions for young bulls using 
more than 500,000 genotyped animals in final score for 
US Holsteins.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not 
obtained for this study because no animals were used.

Computational Strategies

The genomic relationship matrix is typically calculat-
ed with the first method described in VanRaden (2008):

 G
ZZ

Z M P=
−( )

= −( )
′

∑2 1p pj j

and , 

where pj is the allele frequency of the second allele at 
locus j, M is a matrix containing marker genotypes, 
and P is a matrix containing 2pj. The allele frequencies 

were calculated from the current genotyped animals. 
We divided G into 4 submatrices as
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where subscript c refers to a group of core animals and 
subscript n refers to a group of noncore animals. The 
matrix G was blended with A22 as 0.95G + 0.05A22 to 
guarantee its nonsingularity, where A22 is a numerator 
relationship matrix for genotyped animals. Although 
each column of A22 were fully calculated using a 
method described by Aguilar et al. (2011), only the ele-
ments corresponding to Gcc, Gcn, and the diagonals of 
Gnn were added to G. Then, the blended G was scaled 
to satisfy AvgDiag(scaled G) = AvgDiag(A22) and 
AvgOff(scaled G) = AvgOff(A22), where AvgDiag(X) 
and AvgOff(X) are averages of diagonal and off-
diagonal elements of a square matrix X, respectively 
(Chen et al., 2011; Vitezica et al., 2011). The scaling 
was expected to reduce the biases in GEBV for young 
animals (Chen et al., 2011; Vitezica et al., 2011).

Instead of explicitly inverting full G, we set up the 
GAPY
−1  with formulas as in Fragomeni et al. (2015):
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where gii is the ith diagonal element in Gnn, gci is the 
ith column in Gcn, and Mnn is a diagonal matrix. Misz-
tal et al. (2014) suggested APY as an algorithm that 
would only ignore information from nonrelevant ani-
mals, such as young animals. Surprisingly, Lourenco et 
al. (2014) and Fragomeni et al. (2015) observed that a 
large set of core animals gives GAPY

−1  with good accuracy. 
These results imply parts of G−1 that have no contribu-
tions to the accuracy are set to 0 in GAPY

−1  (Misztal, 
2016). The following steps were implemented to facili-
tate efficient computations:

 1. Genotypes were stored in compressed form 
to save memory. The value of each locus was 
coded with 2 bits as: 00 = homozygote, 01 = 
heterozygote, 10 = another homozygote, and 11 
= missing. With this encoding, 16 markers were 
packed into a 4-byte integer variable. For exam-
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ple, 60,000 marker-genotypes were packed into 
15,000 bytes (14.6 KB) per animal. The packed 
genotypes were expanded as needed. Both pack-
ing and unpacking were implemented in parallel.

 2. Whereas Gcc and Gcn were fully computed and 
stored as dense matrices, only the diagonals 
of Gnn were computed and stored as a vector. 
These 3 matrices were blended with A22 and 
scaled with the methods described above.

 3. We calculated Gcc
−1 by updating Gcc with the Lin-

ear Algebra Package (LAPACK; Aguilar et al., 
2011). Then, − −G Gcc cn

1  was stored in temporary 
memory and the diagonals of Gnn were replaced 
with the diagonals of Mnn

−1. Finally, Gcc and Gcn 
were replaced with GAPY

cc  and APYGcn , respectively. 
The Basic Linear Algebra Subprograms (BLAS) 
were used for the dense matrix multiplications 
(Aguilar et al., 2011).

Single-step GBLUP also requires A22
1−  (Aguilar et al., 

2010; Christensen and Lund, 2010). This matrix was 
dense and could not be stored in memory. When mixed 
model equations are solved with the preconditioned 
conjugate gradient (PCG) algorithm, only a product 
of this matrix and a vector, say q, is required in each 
round. The product, A q22

1− , was calculated with an equa-
tion shown by Strandén and Mäntysaari (2014):

 A q A A A A q22
1 22 12 11 1 12− −
= −( ) ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
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'
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where A22, A12, and A11 are sparse submatrices of A−1 
and subscripts 1 and 2 refer to groups of nongenotyped 
and genotyped animals, respectively. We set up A22, 
A12, and A11 using the rapid method (Henderson, 1976; 
Quaas, 1976) as sparse matrices stored in memory at 
the preparation phase. In each PCG round, A q22

1−  was 
calculated with a set of sparse operations: t = A22q, x 
= A12q, y = (A11)−1x, z = (A12) y, and A q22

1−  = t − z, 
where t, x, y, and z are temporary vectors. Because y 
was essentially the solution of sparse equations, we 
needed the Cholesky factor of A11. The sparse factor-
ization was performed using the YAMS sparse package 
(Masuda et al., 2014, 2015). In practice, and because it 
gives strictly the same result, the expression above only 
considered genotyped animals (in matrix A22) and their 
nongenotyped ancestors (in matrix A11), which greatly 
reduces computations.

We incorporated our implementation into the BLU-
P90IOD2 program (http://nce.ads.uga.edu/wiki/doku.
php?id = application_programs), which solves mixed 
model equations using the PCG algorithm (Tsuruta et 
al., 2001). The program stopped when the convergence 

criterion (the squared ratio of the norm of residual 
and right-hand-side vectors; Tsuruta et al., 2001) was 
less than 10−15. The program was compiled with the 
Intel Fortran Compiler 14.0 (Intel Corporation, Santa 
Clara, CA). We used multi-threaded version of BLAS 
and LAPACK in the Intel Math Kernel Library 11.0 
(Intel Corporation). All the analyses were performed 
on a computer running Linux (x86_64) with Intel Xeon 
E7–8857 CPU (3.0 GHz) processors with 24 computing 
cores.

Data

Phenotypic data for final score and pedigree infor-
mation were provided by Holstein Association USA 
Inc. (Brattleboro, VT). The phenotypic data included 
11,626,576 records from 7,093,380 cows classified up to 
March 2014, and pedigree data included 10,710,380 ani-
mals. Genotypes for 60,671 SNP markers were available 
for 569,404 animals. We will refer to these data as the 
full data set. A truncated data set used for validation 
contained only 10,671,898 phenotypes from cows classi-
fied in 2009 or earlier.

Model

A single-trait ssGBLUP model was employed to pre-
dict GEBV. The mixed model equations (Tsuruta et 
al., 2002) included

 H A
G A

− −
− −= +
−

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

1 1
1

22
1

0 0

0 τ APY ω
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where τ and ω are scaling factors to reduce bias in 
GEBV (Misztal et al., 2010, 2013). We used τ = 1.0 and 
ω = 0.9 in this study.

Validation

We defined the predicted bulls as young genotyped 
bulls that had no daughters classified in the truncated 
data (i.e., by the end of 2009) but had at least 30 
daughters classified by March 2014 (n = 2,948). Daugh-
ter deviations (VanRaden and Wiggans, 1991) for the 
predicted bulls (DD2014) were calculated from the 
full data set without genomic information.

Genomic predictions for the predicted bulls 
(GEBV2009) were calculated using the truncated 
data set with different definitions of the core animals 
for GAPY

−1 . The following definitions were considered: 
genotyped bulls with at least 1 classified daughter up to 
2009 (Core09K; n = 9,406), the bulls included in 
Core09K and their dams genotyped and classified up to 
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2009 (Core10K; n = 10,458), the animals included in 
Core10K and genotyped and classified cows born up to 
2009 (Core17K; n = 16,828), and randomly sampled 
5,000 (Rand05K), 10,000 (Rand10K), 15,000 
(Rand15K), 20,000 (Rand20K), and 30,000 
(Rand30K) animals from the 77,066 genotyped ani-
mals born in 2009 or earlier. The random sampling was 
replicated 3 times. Parent averages (PA2009) for the 
predicted bulls were also calculated with the truncated 
data set using a traditional animal model.

A linear regression analysis was conducted for each 
combination of DD2014 with genomic predictions (or 
parent averages) for predicted bulls. The coefficient of 
determination (R2) and regression coefficient (b1) of 
DD2014 on GEBV2009 (or PA2009) were calculated as 
a validation reliability and a bias indicator, respectively.

RESULTS AND DISCUSSION

Table 1 shows wall-clock time for setting up GAPY
−1  

and one round in PCG as well as required memory to 
calculate and store GAPY

−1  for a replicate from Rand05K, 
Rand10K, Rand15K, Rand20K, and Rand30K. The 
most computationally demanding scenario was 
Rand30K; setting up GAPY

−1  finished within 3 h; one 
round of PCG required 16.5 s, corresponding to 4.5 h 
for 1,000 rounds. The maximum memory requirement 
for GAPY

−1  was 130 GB, which can be handled with a 
small-size server. For the components of A22

1− , the com-
putations and the storage were negligible.

The computing time for setting-up GAPY
−1  is predict-

able based on the results from fewer numbers of core 
animals. Loading markers from a text file to memory 
took 18 min. Computing time both in packing the 
marker genotypes and expanding the packed code was 
only 2 min on average. Running time for setting up 
partial G and the computations for GAPY

−1  were ap-
proximately proportional to nc and nc

2, respectively, 
where nc is the number of core animals. The results 
agreed with the theoretical evaluation of computing 
costs (Misztal et al., 2014; Fragomeni et al., 2015).

Table 2 shows the number of rounds to convergence 
in PCG. We needed more rounds when more core 
animals were included, as reported by Fragomeni et al. 
(2015). Koivula et al. (2015) reported that the PCG 
algorithm failed to converge within 5,000 rounds in 
ssGBLUP with random regressions when the matrix 
G was scaled. We used the same scaling method and 
all the PCG algorithm converged within 3,400 rounds 
in all the equations tested. Validation data contained 
many descendant animals without phenotypes, and 
the data structure caused the poor convergence rate 
(Legarra et al., 2014). When the full data were used, 
we needed fewer rounds to reach the same convergence 
criterion (Table 2).

Table 3 shows R2 and b1 (squared accuracy and bias) 
of DD2014 on PA2009 and GEBV2009 from various 
GAPY
−1 . Genomic predictions always had greater accuracy 

and less bias than PA2009. The R2 and b1 were very 
similar across different sets of core animals. For ran-

Table 1. Wall-clock time1 and required memory for preparation of an algorithm for proven and young (APY)-
inverse GAPY

−( )1 , the computation for components of the inverse of a numerator relationship matrix A22
1−( ), and 

an iteration in preconditioned conjugate gradient for randomly sampled 5,000, 10,000, 15,000, 20,000, and 
30,000 core animals with 569,404 genotyped animals

Item

Number of core animals

5,000 10,000 15,000 20,000 30,000

Wall-clock time      
 Setting-up GAPY

−1      
  Load markers (min) 18 18 18 18 18
  Compute GAPY (min) 15 26 37 48 71
  Blend with A22 (min) 26 26 26 25 25
  Compute GAPY

−1  (min) 2 7 14 24 51
  Total (h:min) 1:1 1:17 1:35 1:55 2:45
 Setting up A22

1−      
  Preparation (min) 7 7 8 7 7
 Iteration      
  Per round (s) 10.2 11.7 12.2 13.7 16.5
Required memory (GB)      
 Packed markers 8.0 8.0 8.0 8.0 8.0
 Working area2 4.2 6.4 8.7 10.9 15.5
 Storage for GAPY

−1 21.2 42.4 63.6 84.9 127.3
1Using central processing units (3.0 GHz) with 24 computing cores.
2Peak amount required for setting up GAPY and GAPY

−1 .
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domly sampled core animals, R2 and b1 were almost 
consistent over replicates. The greatest R2 was achieved 
with 10,000 or more core animals. Lourenco et al. 
(2015) reported that GEBV from GAPY

−1  with 8,000 core 
animals accounted for 97% of prediction accuracy from 
GEBV with G−1 for birth weight in the US Angus 
population. Figure 1 shows the correlations of 
GEBV2009 from Rand30K with GEBV from the other 
definitions of core animals. The correlation approached 
to 1 as nc increased. This trend is similar to the results 
from Fragomeni et al. (2015) who used 100,000 geno-
types from the US Holstein population. Over all, our 

results agree with Fragomeni et al. (2015) who con-
cluded that 10,000 or more core animals provided ac-
curate genomic evaluations and randomly sampled core 
animals could achieve the correlation of 1 between 
GEBV estimated either with G−1 or with GAPY

−1 .
The validation reliabilities (Table 3) were generally 

greater than the previous reports for final score in the 
US Holstein population. Tsuruta et al. (2013) reported 
the validation reliability of 0.40 for 1,851 young bulls 
to be sires with at least 30 daughters using ssGBLUP 
with 39,741 genotyped animals. Tsuruta et al. (2014) 
showed the validation reliability of 0.34 for 2,425 young 

Table 2. Rounds to convergence in preconditioned conjugate gradient for different definitions of core animals 
with truncated phenotypes, all the pedigrees, and all the genotyped animals1 (truncated data) and with the 
nontruncated data (full data)

Model  
Definition of  
core animals2

Rounds to convergence

Truncated data Full data

Traditional BLUP  699 571
Single-step GBLUP Core09K 1,343 858
 Core10K 1,502 911
 Core17K 2,066 1,299
 Rand05K3 1,049–1,159 671–694
 Rand10K3 1,581–1,629 1,027–1,092
 Rand15K3 1,952–2,094 1,260–1,419
 Rand20K3 2,327–2,505 1,491–1,670
 Rand30K3 2,874–3,329 1,870–1,976
1Including 569,404 genotyped animals.
2Core09K = genotyped bulls with at least 1 classified daughter up to 2009 (n = 9,406); Core10K = Core09K 
+ their dams genotyped and classified up to 2009 (n = 10,458); Core17K = Core10K + genotyped and classi-
fied cows born up to 2009 (n = 16,828); Rand05K, Rand10K, Rand15K, Rand20K, and Rand30K = randomly 
sampled 5,000, 10,000, 15,000, 20,000, and 30,000 animals, respectively. All the core animals were from the 
77,066 genotyped animals born in 2009 or earlier.
3Ranges over 3 replicates are shown.

Table 3. Coefficients of determination (R2) and regression coefficients (b1) of daughter deviations in 2014 
(DD2014) on parent average (PA2009) and genomic breeding values (GEBV2009) from algorithm for proven 
and young-inverses using truncated phenotypes, all the pedigrees, and all the genotyped animals1 for the 
predicted young bulls with at least 30 daughters classified in 2014

Sire evaluation  
Definition of  
core animals2

Predicted bulls (n = 2,948)

R2 b1

PA2009  0.25 0.63
GEBV2009 Core09K 0.44 0.82
 Core10K 0.45 0.82
 Core17K 0.45 0.83
 Rand05K3 0.39–0.39 0.74–0.75
 Rand10K3 0.43–0.44 0.83–0.84
 Rand15K3 0.44–0.44 0.83–0.84
 Rand20K3 0.44–0.44 0.82–0.83
 Rand30K3 0.44–0.44 0.82–0.83
1Including 569,404 genotyped animals.
2Core09K = genotyped bulls with at least 1 classified daughter up to 2009 (n = 9,406); Core10K = Core09K 
+ their dams genotyped and classified up to 2009 (n = 10,458); Core17K = Core10K + genotyped and classi-
fied cows born up to 2009 (n = 16,828); Rand05K, Rand10K, Rand15K, Rand20K, and Rand30K = randomly 
sampled 5,000, 10,000, 15,000, 20,000, and 30,000 animals, respectively. All the core animals were from the 
77,066 genotyped animals born in 2009 or earlier.
3Ranges of R2 and b1 over 3 replicates are shown.
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bulls to be sires with at least 10 daughters, using ssG-
BLUP with 34,500 genotyped bulls. Olson et al. (2011) 
used a multistep method with 8,022 genotyped bulls as 
reference animals and reported the validation reliability 
of 0.34 for 2,653 young bulls. The regression coefficients 
(Table 3) were similar to or slightly less than the previ-
ous studies: 0.81 (Tsuruta et al., 2013), 0.85 (Tsuruta 
et al., 2014), and 0.86 (Olson et al., 2011). The greater 
reliability and lesser regression coefficient can be re-
lated to the larger number of genotyped animals as 
well as the parameter ω. For example, when we used 
Core09K with ω = 0.7, R2 was 0.35, and b1 was 0.96 
(results not shown). Tsuruta et al. (2013) and Koivula 
et al. (2015) reported that a greater ω resulted in more 
accurate (greater R2) although more biased (smaller b1) 
predictions for young animals. The ω parameter may 
partly compensate for incomplete pedigree information 
(Misztal et al., 2013). Truncation of old pedigrees and 
phenotypes had a minimal effect on realized accuracies 
(Lourenco et al., 2014), but an effect of pedigree com-
pleteness on the reliability has not been investigated 
thus far.

Based on the results of this study, we can estimate 
costs for a genomic evaluation using GAPY

−1  involving 2 
million genotyped animals. Assuming 10,000 core ani-
mals and the formulas in the Appendix, the total stor-
age will be 183 GB (149 GB for the storage of GAPY

−1 ), 
and the computing time to set up GAPY

−1  will be 4.5 h. 

We expect a negligible time for the preparation of the 
components of A22

1− . The multiplication G qAPY
−1  in PCG 

will need 9.5 more seconds per iteration based on the 
current timing in Rand10K, in which the multiplication 
required 3.8 s per iteration. If we need 1,000 rounds in 
PCG, the total computing time for the evaluation will 
be 10.4 h. The GAPY

−1  hence removes the computational 
limitations caused by the number of genotyped animals 
in ssGBLUP.
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APPENDIX

Future Costs of Storage and Computation  
in ssGBLUP with APY

We assume that (1) the number of markers (m) is 
constant, (2) the number of genotyped animals (ng) is 
growing, and (3) the number of core animals (nc) is 
small and constant (i.e., n nc g�  and n n n nn g c g= − ≈ , 
where nn is the number of noncore animals). We also 
assume that newly genotyped animals are all the de-
scendants of the current genotyped animals so the 
number of ancestors for genotyped animals is also fixed.

The most memory is consumed for the dense blocks 
in GAPY

−1  and the number of elements in the blocks is nc 
× ng, so the cost is O(ng), where O(·) is the big-O nota-
tion representing a theoretical measure of the time or 
memory needed (https://xlinux.nist.gov/dads/HTML/
bigOnotation.html). The storage cost for the markers is 
also O(ng). In our implementation, we used temporary 
memory to store − −G Gcc cn

1  and an amount of the tempo-
rary memory depends only on nc (i.e., the storage cost 
for the temporary memory is constant).

In the computations, the most time-consuming pro-
cesses are [Gcc Gcn] = Z Z Zc c  ′ ′⎡⎣ ⎤⎦n  for G (Zc and Zn are 
submatrices of Z for core and noncore animals, respec-
tively) and G G M G Gcc cn nn cn cc

− − −′1 1 1 for GAPY
−1 . The former 

needs nc × ng × m operations, and the latter needs 
2 2n nc n×  operations so that the computing cost is O(ng) 
for both G and GAPY

−1 . The cost in reading markers is 
O(ng). In PCG, a multiplication of G qAPY

−1  needs 
n n n nc c n n

2 2+ × +  operations and the cost is O(ng).
As more genotyped animals are available, the num-

ber of nonzero elements increases in A22 but is constant 
in A12 and A11. Therefore, the future computation cost 
increases for A22q but remains in (A12) (A11)−1A12q. 
The product A22q can be directly calculated from a 
pedigree list (Henderson, 1976; Quaas, 1976), and the 
cost is O(ng). The cost for storage of A22 is also O(ng).
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