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ABSTRACT Treatment of food-producing animals with antimicrobial drugs (AMD) is
controversial because of concerns regarding promotion of antimicrobial resistance
(AMR). To investigate this concern, resistance genes in metagenomic bovine fecal sam-
ples during a clinical trial were analyzed to assess the impacts of treatment on beef
feedlot cattle resistomes. Four groups of cattle were exposed, using a 2-by-2 factorial
design, to different regimens of antimicrobial treatment. Injections of ceftiofur crystal-
line-free acid (a third-generation cephalosporin) were used to treat all cattle in treatment
pens or only a single animal, and either chlortetracycline was included in the feed of all
cattle in a pen or the feed was untreated. On days 0 and 26, respectively, pre- and post-
trial fecal samples were collected, and resistance genes were characterized using shot-
gun metagenomics. Treatment with ceftiofur was not associated with changes to
�-lactam resistance genes. However, cattle fed chlortetracycline had a significant in-
crease in relative abundance of tetracycline resistance genes. There was also an increase
of an AMR class not administered during the study, which is a possible indicator of co-
selection of resistance genes. Samples analyzed in this study had previously been evalu-
ated by culture characterization (Escherichia coli and Salmonella) and quantitative PCR
(qPCR) of metagenomic fecal DNA, which allowed comparison of results with this study.
In the majority of samples, genes that were selectively enriched through culture and
qPCR were not identified through shotgun metagenomic sequencing in this study, sug-
gesting that changes previously documented did not reflect changes affecting the ma-
jority of bacterial genetic elements found in the predominant fecal resistome.

IMPORTANCE Despite significant concerns about public health implications of AMR
in relation to use of AMD in food animals, there are many unknowns about the
long- and short-term impact of common uses of AMD for treatment, control, and
prevention of disease. Additionally, questions commonly arise regarding how to best
measure and quantify AMR genes in relation to public health risks and how to de-
termine which genes are most important. These data provide an introductory view
of the utility of using shotgun metagenomic sequencing data as an outcome for
clinical trials evaluating the impact of using AMD in food animals.

KEYWORDS antibiotic resistance, antimicrobial agents, cattle, feedlot, metagenomics,
postantibiotic effect

Globally, antimicrobial-resistant bacteria have been recognized as a concern (1). As
a result, various uses of antimicrobial drugs (AMD) in agriculture have received

increasing scrutiny and criticism (2–4). Antimicrobial drugs are used in animal agricul-
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ture for treatment, control, and prevention of disease, as well as to improve efficiency
of food production (5). Concerns about the use of AMD in food-producing animals
revolve around the fear that antimicrobial-resistant bacteria, along with their resistance
elements, present in beef cattle could negatively affect public and environmental
health.

Antimicrobial drugs are used in beef cattle for treatment, control, and preven-
tion of bacterial infections, which can directly result in animal health and welfare
benefits and can also indirectly improve production efficiency. Two commonly used
drugs in cattle in the United States are ceftiofur (a third-generation cephalosporin),
which is administered parenterally, and chlortetracycline (CTC), which is adminis-
tered by inclusion in feed. Previously, a research group found that CTC treatment
in feedlot cattle without prior ceftiofur (administered as ceftiofur crystalline-free
acid [CCFA]) exposure resulted in a decreased likelihood of recovering ceftiofur-
resistant Escherichia coli isolates (6). As such, that research group hypothesized that
CTC might antagonize proliferation of cephalosporin-resistant enteric bacteria in
ceftiofur-treated cattle. The effects of combined CCFA and CTC treatment were
therefore investigated in beef feedlot cattle enrolled in a clinical trial based on a
2-by-2 factorial treatment design (7, 8). These studies used cultured E. coli isolates
to evaluate blaCMY-2, tet(A), and tet(B) and quantitative PCR (qPCR) in metagenomic
fecal DNA extractions to identify and quantify the presence of the aforementioned
antimicrobial resistance (AMR) genes in addition to blaCTX-M-32. Their results sug-
gested that both treatments were associated with both increased prevalence and
quantity of ceftiofur resistance.

Research conducted using clinical trials to evaluate the impacts of AMD adminis-
tration provides better opportunities to avoid bias, and these studies conducted by
Kanwar et al. (7, 8) and Ohta et al. (9) provide important information that is relevant to
beef production and public health. However, they provide limited information about
the entire microbiome and resistome, given their focus on either specific bacterial
species (e.g., E. coli and Salmonella) or a few AMR genes [e.g., tet(A), tet(B), blaCMY-2, and
blaCTX-M-32] using qPCR. Since this field work was completed, advances in the applica-
tion of shotgun sequencing and bioinformatics for characterization of the microbial
metagenome have made it possible to investigate AMR ecology in the context of the
predominant microbiome and resistome. While the four genes previously studied by
Kanwar et al. (7, 8) are important, there are thousands of additional genetic determi-
nants of AMR that might be found in the microbial milieu of the gut. Shotgun
metagenomic sequencing provides an opportunity to investigate dynamics in the
ecology of AMR through a much broader investigative lens.

The objective of this study was to use shotgun metagenomic sequencing to
investigate the changes in the fecal resistome of feedlot cattle using samples collected
during a previously conducted clinical trial that administered CCFA and CTC in feedlot
cattle (7, 8). A secondary objective of this study was to compare conclusions based on
shotgun metagenomics to qPCR and culture results from the same samples.

RESULTS AND DISCUSSION
General sequencing results. Sequencing of 32 composite DNA samples extracted

from feces of cattle generated 1.42 billion total reads with an average of 44.24 million
reads (average read length, 126 bp) per sample (range, 14.62 to 67.87 million reads).
Phred scores across all samples averaged 35.11 (range, 32.6 to 35.77). Trimming
resulted in removal of 2.4% of reads across all samples. Of the remaining trimmed
reads, 0.14% were classified as Bos taurus or Bos indicus and removed. Sequencing
depth was considered appropriate through the construction of rarefaction curves for
both the species and AMR genes present (see Fig. S1 in the supplemental material).

Overall resistome composition. A total of 1.25 million reads aligned to 101 AMR
genes included in the MEGARes database (10). The AMR-aligned reads accounted for
0.09% of total mapped reads though this total was affected by antibiotic treatment
(Table 1). Sequences identified in these samples were classified hierarchically as hits to
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AMR genes (i.e., at the drug class, mechanism, and group levels), with hits assigned to
five unique classes of resistance (aminoglycoside, �-lactams, macrolides-lincosamides-
streptogramins [MLS], tetracyclines, and mechanisms for multiple drugs [e.g., efflux
pumps]), in which there were genes encoding 13 different mechanisms (Table S1). Hits
aligning to tetracycline resistance genes were the most common among normalized
reads mapping to the differing AMR gene classes (8.19 tetracycline resistance hits/12.64
total AMR gene-normalized counts as a ratio to bacterial 16S gene-normalized counts),
while MLS genes comprised most of the remaining AMR genes (3.30 MLS resistance
hits/12.64 total AMR gene-normalized counts as a ratio to bacterial 16S gene-
normalized counts) (Fig. 1). The principal genes conferring mechanisms of resistance to
the tetracycline class (98.5%; 8.07/8.19 tetracycline AMR gene-normalized counts as a
ratio to bacterial 16S gene-normalized counts) were for ribosomal protection proteins
(RPP), with the most abundant tetracycline groups being tet(Q) (39.5% of the resistome)
followed by tet(40) (5.3% of the total resistome). Macrolide resistance efflux pump
(MREP) genes were the main mechanism that conferred resistance in the MLS class
(88.7%; 2.93 MREP-resistant bacteria/3.30 MLS AMR gene-normalized counts as a ratio
to bacterial 16S gene-normalized counts). The other commonly encountered mecha-
nism of resistance was to Ambler class A �-lactamases, which comprised 4.6% of total
resistance mechanisms (primarily made up of blaCFX-A6 and the blaACI-1 groups). Fur-
thermore, resistance genes that Noyes et al. (11) defined as important to human health
care were not found in these samples.

Interestingly, tetracycline resistance also predominated among phenotypically char-
acterized E. coli recovered during prior investigations of these same samples (7);
phenotypic resistance to tetracycline was identified in 61.1% of isolates. Other metag-
enomic sequencing studies have also identified tetracycline to be the predominant
class of resistance genes found in the fecal microbiome of cattle, followed by resistance
to the MLS drug class (11, 12); since resistance to the latter class is uncommon in
Gram-negative bacteria, there is no prior point of comparison in this study.

Treatment with tetracycline was associated with tetracycline AMR genes. The
resistome increased in size as a result of CTC treatment (Table 1), with a significantly
increased number of normalized hits to AMR genes in the fecal resistome of the two
groups of cattle treated with CTC (P � 0.05) compared to the number of hits in those
not treated with CTC. Additionally, the relative abundance of tetracycline resistance
genes increased (Bonferroni adjusted P value, �0.05) from day 0 to day 26 among
groups of cattle fed CTC regardless of CCFA treatment (Fig. 1 and 2). The increase in
tetracycline resistance genes was significant among all mechanisms of tetracycline
resistance that were identified (Fig. 3). Noyes et al. (11) also found an increase in the
proportion of samples positive for two mechanisms of tetracycline resistance (major
facilitator superfamily efflux pumps and ribosomal protection proteins) in feedlot pens

TABLE 1 Percentage of raw sequence reads in relation to raw hits to antimicrobial
resistance genes by day and chlortetracycline treatmenta

Treatment day and CTC useb

Estimated percentage of
aligned readsc

0
No 0.077 A
Yes 0.077 A

26
No 0.080 A
Yes 0.115 B

Mean square error 0.004
aCeftiofur crystalline free-acid (CCFA) effects were also considered as part of an interaction and as a main
effect and was found to not have a significant impact on the resistome. Thus, estimates reported here are
not separated by CCFA treatment.

bCTC, chlortetracycline.
cValues are least square means. Values with different letters are significantly different (P � 0.05).
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where at least one animal was administered tetracycline during feeding. While this
study and that of Noyes et al. (11) would suggest that tetracycline class administration
exerts selective pressure on tetracycline-resistant bacteria, the existing literature is not
as clear on the topic. For example, Morley et al. (13) found phenotypes of resistant
non-type-specific E. coli cultured from feces of beef feedlot cattle increased in tetracy-

FIG 1 Normalized relative abundances of classes of antimicrobial resistance (combined across treatment day and treatment) treated
in a 2-by-2 factorial of chlortetracycline (yes or no) or ceftiofur crystalline-free acid (low exposure, with one animal treated in the pen,
or high exposure, with all animals treated in a pen). Each column represents a treatment on day 0 and day 26.

FIG 2 Nonmetric multidimensional scaling (NMDS) ordination plots of resistome composition on day 26 by treatment group (stress � 0.096, R � 0.58,
and P � 0.001), chlortetracycline (CTC) treatment (stress � 0.082, R � 0.49, and P � 0.001), and ceftiofur crystalline-free acid (CCFA) treatment (stress �
0.084, R � 0.12, and P � 0.067). Significance of CTC treatment and no CCFA treatment seems to show that CTC treatment was the main driver of
treatment group resistome differences.
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cline resistance prevalence as the feeding period progressed despite the direct lack of
exposure to tetracycline. A possible driver of this increase could have been the historic
tetracycline use in feedlots, resulting in elevated environmental levels prior to the
study. These various associations between resistance and exposure to tetracycline limit
the ability to form strong conclusions about the influence it has on promotion of AMR
in cattle. Another consideration when changes to tetracycline resistance are evaluated
is the time from exposure to sampling. Samples evaluated in this study were collected
on day 0 and day 26, which was only 6 days after the final in-feed administration of CTC.
As such, these results may represent a maximal impact of exposure in comparison to
situations when there is a longer washout period.

�-Lactam resistance saw no long-term changes in resistance patterns. While
normalized counts of hits to �-lactam resistance genes were slightly higher on day 26
in study groups where all cattle were treated parenterally with CCFA, these differences
were small and not statistically significant (Bonferroni adjusted P value, �0.05) (Fig. 1
and 2). At the mechanism level, on day 26, there were no significant differences
between treatment groups in either Ambler class A or Ambler class C (Bonferroni
adjusted P value, �0.05). At the group level, CMY and CTX were not found in the data;
thus, no formal statistical analysis could be conducted. The CFX group was the
predominant group of �-lactam resistance, and there was no significant difference
between treatment groups on day 26 (Bonferroni adjusted P value, �0.05). These
findings are in contrast to the findings of studies using culture to study blaCMY-2

(Ambler class C) and qPCR to study both blaCMY-2 and blaCTX-M (Ambler class A) genes
in the same samples (7, 8). This difference may be related to the shotgun sequencing
approach used here, which encompassed the investigation of over 2,000 �-lactam gene
targets in the database used. Using metagenomic sequencing, we found that hits to
blaACI-1 and blaCFX-A6 (both Ambler class A) comprised the majority of hits to �-lactam

FIG 3 Normalized relative abundance counts per 1,000 copies of the bacterial 16S gene by (a) tetracycline resistance overall as a class and the
three mechanisms of tetracycline resistance, (b) tetracycline inactivation enzymes, (c) tetracycline resistance major facilitator superfamily (MFS)
efflux pumps, and (d) tetracycline resistance ribosomal protection proteins displayed over day 0 with no animals fed CTC, day 0 with (w/) all
animals in the pen fed CTC, day 26 with no animals fed CTC, and day 26 with all animals in the pen fed CTC. The ratio estimates how many
tetracycline resistance genes are present per 1,000 bacteria. Within the panels, letters above the bars that differ denote a significant (Bonferroni
adjusted P value, �0.05) difference. 1, LSMeans, least square means; 2, CTC, chlortetracycline; 3, MFS, major facilitator superfamily.
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resistance genes, representing 32.4% and 52.7% of the total �-lactams found, respec-
tively.

The differences in results regarding �-lactam resistance genes identified in the same
samples as reported by Kanwar et al. (7, 8) and the results reported here highlight a
currently unanswered question in AMR research: which resistance genes are most
impactful for human health? At the molecular class level, �-lactam genes are classified
in subgroups A through D (14). The blaCMY-2 gene belongs to subgroup C, and
blaCTX-M-32 belongs to subgroup A. Both of these genes are considered highly impor-
tant when found in pathogens because of their ability to confer resistance to higher-
order �-lactams such as third- and fourth-generation cephalosporins, which are impor-
tant for treating infections resistant to lower-order �-lactams, such as penicillin,
aminopenicillins, and first- and second-generation cephalosporins (15). In contrast,
blaACI-1 and blaCFX-A6 are both class A �-lactam resistance genes that encode resistance
that is greater against lower-order �-lactams and have mainly been described in
Gram-positive anaerobes (16). Higher-order �-lactam drugs have been classified by the
World Health Organization and other public health groups as being “critically impor-
tant” to human medicine, while lower-order �-lactam drugs have a lower classification
as “highly important” (17). While these designations relate to the availability of alter-
natives for treating resistant infections, they do not account for the probability of
encountering bacteria with resistance to these drugs. This raises the question of
whether it is riskier to have more nonpathogenic bacteria resistant to a highly impor-
tant antimicrobial or fewer pathogenic bacteria resistant to highest-priority, critically
important antimicrobials. To this end, it is unclear if the researcher should focus solely
on the most prevalent or highly abundant resistance genes or on those that confer
resistance to the drugs of last resort.

Relative abundances of resistance genes increase for AMD not administered to
the population. Three other classes of resistance were present at a high enough level
to compare formally between treatment days. The relative abundances of AMR genes
encoding aminoglycoside resistance increased (Bonferroni adjusted P value, �0.05)
from day 0 to day 26 in all treatment groups (Table 2). Over this same time period, the
MLS class and multidrug resistance did not see a significant increase (Bonferroni
adjusted P value, �0.05). An increase in aminoglycoside resistance is of interest
because no aminoglycosides were administered to the cattle throughout the study.
Noyes et al. (11) also found aminoglycoside resistance changed in their study absent
treatment with this AMD. These results suggest that other ecological factors drove this
change, such as changes in the microbiome or coselection, similar to the change
described by Coque et al. (18) regarding the proliferation of extended-spectrum
�-lactamase (ESBL) resistance through coselection with aminoglycosides. In this in-
stance, the most common hits to AMR genes for aminoglycoside drugs encoded
mechanisms for drug modification via O-phosphorylation.

Treatments had little impact on resistome richness, but CCFA administration
was associated with changes in diversity. Among the four treatment groups, there

TABLE 2 Least square means of antibiotic classes of resistance not administered in the
study

Class of resistancea

Relative abundance (least square
means) by treatment dayb

SEM0 26

Aminoglycoside 9.5 A 17.0 B 1.4
MLS 139.8 A 170.4 A 14.1
MDR 0.9 A 0.4 A 0.5
aWhile other classes of resistance were identified, they were not present at a high enough level to be
formally statistically compared. MLS, macrolide-lincosamide-streptogramin B; MDR, multidrug resistance.

bValues were determined per 1,000 copies of the 16S rRNA gene on day 0 and day 26 pooled across all
treatment combinations. Means within rows with different letters are significantly different (Bonferroni
adjusted P, �0.05).
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were no significant differences detected in richness of the resistome at the class,
mechanism, or group levels (P � 0.31, P � 0.52, and P � 0.11) though due to the
pooling of samples for shotgun metagenomic evaluation, this outcome may have been
different with a larger sample size. At the class level in pens not treated with CTC, pens
of cattle where only 1 animal was treated with CCFA had higher (P � 0.05) resistome
diversity than pens of cattle where all cattle were treated with CCFA.

While changes in microbiome diversity as a result of antibiotic administration have
been well documented in both human and animal models, there has been less research
on the impact of administration on the resistance genes in the community. Zhu et al.
(19) found that the use of antibiotics on swine farms increased the diversity of AMR
genes found. Here, it was found that in pens of cattle where only one animal was
treated with CCFA (as opposed to all the cattle in a pen), there was a higher diversity
of AMR genes.

These differences in diversity could be due to relative fitness costs. Sun et al. (20)
hypothesized that resistance occurs at a relative fitness cost. Commensal bacteria
external to the animal and that are susceptible to AMD may outcompete within-host
resistant bacteria after AMD treatment ends or mitigate an expansion of ex vivo
resistant bacterial populations immediately posttreatment. While this was not observed
in previously described culture studies (7–9), this repopulation is likely dependent on
the availability of bacteria from the pen environment. In this study, higher group-level
exposures to CCFA (an extended-duration formulation of ceftiofur) may have had a
greater long-term suppressive effect on enteric bacteria and, thus, a lower measure of
population diversity.

The potential for bias associated with sequence classification. Investigations on

whether methods used for alignment and classification of sequencing reads could have
biased the study conclusions, especially given that the treatments used in the clinical
trial were a cephalosporin (a �-lactam) and a tetracycline, were also conducted. In order
to evaluate the relative abundance of AMR genes in fecal samples, our bioinformatics
pipeline used a Burrows-Wheeler alignment (BWA) tool, as previously described (10, 21).
There are a greater number of published �-lactam resistance genes with a high degree
of sequence homology than the published sequences for tetracycline class resistance
genes, and this difference in numbers of published genes combined with differences in
the likelihood of genes having conserved sequences creates the potential to differen-
tially influence estimates of relative abundance and diversity for these two classes of
antibiotic resistance.

While it is important to use a comprehensive database of reference sequences for
resistance genes in order to fully describe the diversity of features within the resistome,
the presence of sequence homology across different features can lead to artificial
inflation of the number and diversity of features to which hits are attributed. If the
sequence of a read can be equally attributed to multiple features, alignment tools such
as BWA will typically randomly assign the read to one of the potential classifications,
thereby tending to increase diversity. Unfortunately, the potential for this to affect
classification of hits to AMR genes differs among classes of AMD. Accepted nomencla-
ture rules for identifying new tetracycline AMR genes suggest that a newly identified
gene must have �80% amino acid identity with a previously described gene (22). In
contrast, accepted nomenclature rules for �-lactam AMR genes suggest that the
predicted protein sequence for new genes may differ by only one or more amino acids
from previously described genetic determinants (23). This is illustrated by TEM-20,
which differs from TEM-19 by a single silent mutation while TEM-21 differs from TEM-3
and TEM-14 by a single mutation (24). Other classes of AMR genes do not have
uniformly accepted nomenclature guidelines. Decreasing the number of substitutions
that are required to name a new gene can therefore lead to a publication bias for AMR
genetic elements, as reflected in different AMR gene databases. For example, MEGARes
includes 2,138 AMR gene accession numbers associated with �-lactam resistance
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(55.9% of the entire MEGARes database) but only 143 AMR gene accession numbers
associated with tetracycline resistance (3.7% of the database).

This bias was investigated by running a second analysis in which a read was allowed
to be classified against multiple AMR database elements if it aligned equally well to a
homologous sequence contained in multiple accession numbers (thus a single read had
the potential to contribute a hit to multiple gene accession numbers). The focus of this
analysis was on tetracycline and �-lactam resistance. The objective of this sensitivity
analysis was to determine if small shifts in �-lactam and tetracycline resistance gene
relative abundances were masked by our bioinformatics approach. However, analysis of
this revised data set did not reveal any different outcomes from our original analysis.

Comparisons to culture and PCR results. After the first alignment to the AMR

database, the most commonly identified resistance elements identified using metag-
enomic sequencing differed from the genes targeted by qPCR analysis used in the
previous investigation of these fecal samples (7, 8). To verify the absence of these
genes, all 32 sample sequences were visually evaluated for primers specific to the
previously studied genes. The previous studies reported shifts in abundances relative to
tet(A), tet(B), blaCMY-2, and blaCTX-M (qPCR only), genes also identified by qPCR in E. coli
isolates and in metagenomic DNA extractions. However, shotgun sequencing found no
reads that aligned to the tet(B), blaCTX-M, or blaCMY-2 gene, and only one sample
exhibited a hit to the tet(A) gene. This finding was confirmed by visual inspection of
sequences (see Fig. S2 in the supplemental material).

The inability to identify sequences in shotgun sequencing data that were found
using qPCR is not unexpected and highlights differences in research questions that may
be better approached using these two tools. A fundamental feature of PCR testing is
the amplification of specific nucleotide sequences, which can be further enhanced if
culture methods are used to select or enrich different parts of the microbiome. In
contrast, a foundational assumption of shotgun sequencing is that the sequence
abundances that are generated in the analysis are directly proportional to their relative
abundances in the original sample. While a reflective sample of the community,
shotgun metagenomics typically highlight the predominant bacteria and genes pres-
ent, with rare genes less likely to be sequenced. Thus, if the sequences targeted in
selected PCR assays are relatively rare in the metagenome, they can easily remain
undetected by shotgun sequencing. Therefore, while the breadth of metagenomics
allows the measurement of the most prevalent resistance genes in a bacterial commu-
nity, it is in no way a tool able to characterize every resistance gene in a sample. This
leads to a fundamental question of whether AMR genetic elements are important
in addressing the research question even when they are extremely rare. If common
background elements can be disregarded and if rare AMR genes are more impor-
tant to public health than these common elements, then PCR may be a better tool
for interrogating AMR gene ecology than shotgun sequencing. Comparison of these
approaches raises another important question, which is whether we know enough
about the ecology of AMR to focus on a few genes using PCR as opposed to
characterizing all possible AMR genes using shotgun sequencing. In any complex
bacterial community, there are many different types of bacteria and different AMR
genes within the microbiome, as indicated by previous research (11, 12, 25). Shotgun
metagenomics allows the simultaneous study of pathogenic and commensal bacteria;
importantly, the latter dominate in the enteric ecology of all but a very few clinical
diseases. Yang et al. (25) demonstrated that while shotgun metagenomics is not yet
appropriate for regulatory supervision of pathogens, it is an appropriate tool for
pathogen screening. The bacterial community component of metagenomics is espe-
cially important as horizontal gene transfer of attributes to increase cell survival, such
as antibiotic resistance, has been well established (26), with some commensal bacteria
serving as a reservoir for these genes (27). As a result, characterization of community
antibiotic resistance should be performed within the broader bacterial community,
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ideally not be limited to a single indicator organism, and preferably not be limited to
a single methodological approach.

Conclusion. Shotgun metagenomic sequencing provided an ecological perspective
on the microbial dynamics related to AMR in this clinical trial comparing two different
AMD treatments in beef cattle. There were no significant detectable changes in the
relative abundances of �-lactam resistance genes in the feces of cattle in association
with treatment with CCFA although diversity was impacted. In contrast, the relative
abundances of tetracycline resistance genes increased on day 26 after exposure of the
cattle to chlortetracycline via feed. There was also a detectable increase in the relative
abundances of aminoglycoside-resistant genes at the end of the trial in all cattle.
However, these results did not mimic those obtained when feces were evaluated using
culture and PCR (7, 8). These various results highlight the complex nature of community
antibiotic resistance that cannot be attributed solely to antibiotic selective pressure.
Shotgun metagenomics provided a robust characterization of resistance genes present
in the enteric bacterial community and provided a contrasting view of the dynamics of
antimicrobial resistance to that provided via either indicator or pathogenic bacterial
culture or else more targeted PCR amplifications.

MATERIALS AND METHODS
Study design. Collection of samples used in this study has been previously described (7, 8). Briefly,

bovine fecal samples used in this study were collected per rectum on two sampling days over a 26-day
feeding period. Two replicates each consisting of 88 steers were blocked by weight and randomly
assigned to eight pens that each housed 11 steers. The steers were predominantly of the Angus breed
and were yearlings with an average weight of 437.3 kg at the beginning of the study. All steers were
housed in dry-lot pens and fed a flaked-corn-based diet with added roughage, protein, vitamins, and
minerals. Thus, the study consisted of a total of 176 cattle. In each replicate, pens of cattle were randomly
assigned to one of four treatment groups, based on a 2-by-2 factorial design. One treatment group
received chlortetracycline via the feed (Aureomycin; Alpharma, Bridgewater, NJ, USA) at a level intended
to deliver 22 mg/kg of body weight of chlortetracycline per day for 23 days (chlortetracycline was
administered during three separate 5-day periods, with a 1-day break in between feeding periods,
starting on day 4 with the final treatment on day 20), and all cattle in these pens were treated
parenterally per the manufacturer’s instructions on day 0 with long-acting CCFA (Excede; Zoetis Animal
Health, NJ, USA) at a dose of 6.6 mg/kg body weight. All cattle in the second treatment group received
chlortetracycline in feed, but only 1 of the 11 steers in each pen was treated on day 0 with CCFA. The
third treatment group was not treated with chlortetracycline, but all cattle were treated parenterally on
day 0 with CCFA. The fourth treatment group was also not treated with chlortetracycline, and only 1 of
the 11 steers in each pen was treated on day 0 with CCFA.

Sample collection and processing. Only the feces collected per rectum on day 0 and day 26 from
all animals were included in this analysis. DNA was extracted from 200 mg of feces from each sample
using a QIAamp DNA stool minikit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instruc-
tions using a QIAcube robot (Qiagen, Valencia, CA, USA). Once DNA was extracted, an equal mass of DNA
from each sample was pooled from each animal by pen and day; thus, a total of 32 composite samples
were prepared (the DNA used in the metagenomic analysis was from the same extraction as the culture
and qPCR results). Quality and concentration of the DNA were determined using a NanoDrop ND-1000
UV-visible light spectrophotometer (NanoDrop Technologies, Wilmington, DE).

Library preparation and sequencing. Sample libraries were prepared for sequencing using a
NuGen Ultralow System V2 library kit (NuGen Technologies Inc., San Carlos, CA, USA). Samples were run
on four lanes of an Illumina HiSeq 2000 instrument (Illumina, Inc., San Diego, CA, USA) with eight samples
per lane (2 by 125 bp) at the Genomic and Microarray Core at the University of Colorado—Denver
(Aurora, CO, USA).

Processing metagenomic sequence data. Raw sequence data were trimmed and filtered using
Trimmomatic to remove low-quality reads (28). The ILLUMINACLIP command was used to remove
Illumina TruSeq adaptors. Each read’s first and last three base pairs were removed. Then, starting at the
3= end of the read, a four-nucleotide sliding window calculated the average Phred score, and, if the score
was lower than 15, that window was removed until the average quality score rose above 15. Finally, any
reads with less than 36 nucleotides and their mates were removed from the data set. Trimmed reads
were aligned to the Bos taurus (genome assembly UMD_3.1) and the draft Bos indicus (29) genomes, and
these sequences were filtered out of the sample using the Burrows-Wheeler aligner (BWA) using default
settings (21). The removal of these genomes created a nonhost read sample for each of the 32 samples.

Resistome analysis. Nonhost reads were aligned to the MEGARes database (10) using BWA with the
default setting plus the “-N” option, which allowed all hits with no more than maxDiff differences to be
found. A custom-developed Java-based script was used to parse the resulting SAM file such that the gene
fraction, defined as the proportion of nucleotides in a given reference gene that aligned to at least one
read, was calculated for each AMR gene in each sample (12). Only AMR genes with gene fractions of
�80% were considered present in a sample and included in further analyses; this method aimed to
decrease the number of false-positive identifications (11, 30).
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The number of reads that were classified as matching a published gene accession number in the
MEGARes database was tabulated, along with the corresponding hits to the higher levels of group,
mechanism, and class of AMR, according to the hierarchical structure of the database (10). Analysis at the
gene level was not performed to avoid biasing diversity measures as a result of nonuniform gene naming
nomenclature and sparseness of many gene counts (31). Across all samples, genes that Noyes et al. (11)
considered important to human health were specifically searched for at the gene level prior to
downstream analysis. Hits to 33 AMR genes that were identified in �3 samples were removed from the
analysis. Richness and Shannon’s diversity were calculated on a data set with sparse features intact that
was normalized as described below. The remaining counts were normalized in a two-step process. First,
counts were normalized using cumulative sum scaling (CSS) with a default percentile of 0.5 for
normalization, which accounted for different sampling depths across samples (32). After this, the
equation of Li et al. (33) was adopted to account for differences in sequence lengths of AMR genes and
bacterial loads in samples. Reads were aligned to the full Greengenes database using BWA with default
paired-end settings to identify 16S sequences in all nonhost read samples (34). Then, the relative
abundance of each AMR gene was calculated as follows:

Relative abundance � �
i�1

n NAMR-normalized hits ⁄ LAMR reference sequence

N16S sequence ⁄ L16S sequence
(1)

with NAMR-normalized hits as the number of cumulative-sum-scale (CSS)-normalized hits to one specific AMR
gene, LAMR reference sequence as the sequence length of the corresponding AMR gene, N16S sequence as the
number of hits to 16S sequences, and L16S sequence as the average length of the 16S sequences in the
Greengenes database. This equation allowed the expression of AMR gene-normalized counts as a ratio
to bacterial 16S gene-normalized counts. After normalization, counts were aggregated to the AMR drug
class and resistance mechanism for statistical analysis.

Statistical analysis. Comparisons were made using CSS-normalized counts according to Li et al. for
reads classified as hits to AMR gene accession numbers. To assess systematic changes in resistome
composition between treatment groups and over time, nonmetric multidimensional scaling (NMDS)
ordination was performed using the Hellinger transformation and Euclidean distances to avoid over-
weighting of rare antimicrobial resistance determinants (ARDs) using R (version 3.3.0) with the Vegan
metaMDS function (35). Separation among groups of interest was tested using analysis of similarities
(ANOSIM) (36). Treatment main effects and interactions were examined using the Proc Mixed procedure
in SAS (version 9.4). Adjustments for multiple comparisons were made using a Bonferroni correction with
an initial � of 0.05, leading to a corrected critical value of � of 0.01 (0.05/5) for comparison at the level
of the class of resistance and an � of 0.00385 (0.05/13) for comparisons made at the level of the
mechanism of resistance. The main effects of day, treatment with CTC, and treatment with CCFA, as well
as their interactions, were analyzed at the levels of AMR class and mechanism. These main effects and
interactions were also used in the analysis of richness (the number of unique features in a sample; e.g.,
number of classes of AMR genes) and Shannon’s diversity (the number and proportion of unique features
in a sample). The effects of experiment replication and pen were dropped from the models as they were
not significant. Sequencing lane (i.e., categorization of which samples were sequenced together on the
same lane) was controlled as a random effect, and LSMEANS/PDIFF was used to compare means when
a main effect or interaction was significant in relation to the respective critical value. All analyses
considered pen the experimental unit.

Comparison to previous studies. To investigate whether results from previous investigations of the
samples used in this study (performed using culture and qPCR) could be replicated using shotgun
metagenomic sequencing, two additional analyses were performed. First, using the BWA output SAM file,
a pearl script (https://github.com/lh3/bwa/blob/master/xa2multi.pl) was used to evaluate reads that
could be assigned to multiple gene accession numbers in the AMR database with equal probability (as
designated in the optional XA:Z sam field) by appending them to a new SAM file, allowing a single read

TABLE 3 Primers used for PCRs and identified in shotgun metagenomic samplesa

Gene name Primer nameb Sequence
GenBank
accession no.

blaCMY-2 585F 5=-CAG ACG CGT CCT GCA ACC ATT AAA-3= AB212086
1038R 5=-TAC GTA GCT GCC AAA TCC ACC AGT-3=
675F 5=-AGG GAA GCC CGT ACA CGT T-3=
738R 5=-GCT GGA TTT CAC GCC ATA GG-3=

blaCTX-M-24 CTX-M(F) 5=-ATGTGCAGYACCAGTAA-3= AY143430
CTX-M(R) 5=-CCGCTGCCGGTYTTATC-3=

tet(A) tet(A)(F) 5=-GCTACATCCTGCTTGCCTTC-3= X61367
tet(A)(R) 5=-CATAGATCGCCGTGAAGAGG-3=

tet(B) tet(B)(F) 5=-TTGGTTAGGGGCAAGTTTTG-3= J01830
tet(B)(R) 5=-GTAATGGGCCAATAACACCG-3=

aAdapted from Kanwar et al. (8).
bF, forward; R, reverse.
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to be classified as multiple hits. This new classification (i.e., allowing a read to be counted more than
once) was then analyzed using the same pipeline for normalization and comparison of AMR relative
abundance at the class and mechanism hierarchical levels.

Another post hoc procedure was used to investigate whether sequencing reads could be identified
that matched the PCR primers used in previous studies (7, 8). Because the primers (Table 3) were small
(20 to 24 bp), BW alignment was unsuccessful even after the minimum seed length was changed to 10
bp. Instead, Tablet (version 1.15.09.01) was used to visually assess the primer region to investigate reads
that could match the sequences of interest (37). Each of the 32 samples was individually inspected to
identify reads matching the sequences for primers targeting tet(A), tet(B), blaCMY2, and blaCTX-M.

Accession number(s). Reads for all 32 samples described in this project have been deposited in the
NCBI database under BioProject number PRJNA419351.
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