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The objective was to examine effects of treating commercial beef feedlot cattle with

therapeutic doses of tulathromycin, a macrolide antimicrobial drug, on changes in

the fecal resistome and microbiome using shotgun metagenomic sequencing. Two

pens of cattle were used, with all cattle in one pen receiving metaphylaxis treatment

(800mg subcutaneous tulathromycin) at arrival to the feedlot, and all cattle in the other

pen remaining unexposed to parenteral antibiotics throughout the study period. Fecal

samples were collected from 15 selected cattle in each group just prior to treatment

(Day 1), and again 11 days later (Day 11). Shotgun sequencing was performed on isolated

metagenomic DNA, and reads were aligned to a resistance and a taxonomic database to

identify alignments to antimicrobial resistance (AMR) gene accessions and microbiome

content. Overall, we identified AMR genes accessions encompassing 9 classes of AMR

drugs and encoding 24 unique AMR mechanisms. Statistical analysis was used to

identify differences in the resistome and microbiome between the untreated and treated

groups at both timepoints, as well as over time. Based on composition and ordination

analyses, the resistome and microbiome were not significantly different between the two

groups on Day 1 or on Day 11. However, both the resistome and microbiome changed

significantly between these two sampling dates. These results indicate that the transition

into the feedlot—and associated changes in diet, geography, conspecific exposure, and

environment—may exert a greater influence over the fecal resistome and microbiome of

feedlot cattle than common metaphylactic antimicrobial drug treatment.
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INTRODUCTION

One of the most critical periods in managing the health and
wellbeing of beef cattle is when they are transitioned from less
intensive production settings, such as pasture or backgrounding
operations, to feedlots. During this transition, animals are
exposed to varied stressors associated with handling, transport,
processing, commingling, and a shift to a high-energy feedlot
diet (Sanderson et al., 2008). In response to these stressors,
animals may become more susceptible to infectious disease,
such as those that cause bovine respiratory disease (BRD), the
single largest cause of morbidity and mortality among feedlot
cattle in the United States (Hilton, 2014; Grissett et al., 2015).
Because groups of cattle that are deemed to have an especially
high risk of BRD can already be incubating infections that will
become life-threatening despite the absence of clinical signs,
groups of cattle with particularly high risk of BRD are sometimes
treated with antimicrobial drugs (AMDs) at the time they enter
feedlots, a practice that is known as metaphylaxis. Metaphylactic
treatment of entire groups of cattle with a high risk of BRD
can be highly efficacious in preventing life-threatening disease;
specifically, parenteral administration of therapeutic doses of
tulathromycin has been shown to be highly effective when used
as metaphylaxis for preventing illness and death related to BRD
(Wellman and O’Connor, 2007; Murray et al., 2016; O’Connor
et al., 2016; Abell et al., 2017). However, treatment of animals
with AMDs, especially mass treatment regimens, are subject
to increasing concern and scrutiny because of the potential
for public health impacts related to antimicrobial resistance in
bacteria that may be transferred to consumers through the food
chain or environmental routes.

In the most recent national survey data available, 45.3%
of feedlots reporting metaphylaxis use reported using
tulathromycin to prevent BRD when cattle arrived at the
feedlot (USDA, 2013). Its use has been demonstrated to be
highly effective in reducing BRD morbidity in feedlot cattle with
only minor adverse side-effects (Modric et al., 2011; Abell et al.,
2017), but cardiotoxicity has been reported in several species
such as mice and rabbits (Er et al., 2011; Abdel-Daim et al.,
2018). Tulathromycin is a macrolide, a class of antimicrobials
considered critically important for human medicine (World
Health Organization, 2011) and despite increasing scrutiny
of antimicrobial use practices in livestock production, little
work has been performed to study the effect of tulathromycin
metaphylaxis on antimicrobial resistance (AMR) in cattle. Past
research has frequently focused on phenotypic resistance to a
limited number of AMDs in one, or at most a few, bacterial
species using traditional culture methods (Godinho, 2008;
Zaheer et al., 2013; Timsit et al., 2017). However, the response to
antimicrobial use varies among bacteria and because resistance
genes can be transmitted amongst a wide variety of bacteria;
results found in one bacterial species cannot be extrapolated
to the community level (Portis et al., 2012; Alexander et al.,
2013). Such AMD exposures have potential to affect the entire
gut ecology, and as such, a broader perspective is needed in
investigating potential effects of metaphylactic treatment on
microbial communities.

High-throughput sequencing techniques now enable a
culture-independent metagenomic approach that can be used
to study the resistome and microbiome, allowing access to
the complete repertoire of resistance genes and bacteria within
a given sample. Therefore, this study was conducted to
investigate the impact of metaphylactic treatment of cattle
with tulathromycin on the fecal resistome and microbiome
of commercial feedlot cattle in the early feeding period using
shotgun metagenomics.

MATERIALS AND METHODS

Overview of Study Design and Population
Two groups of cattle were identified for enrollment in the study
before their arrival at a commercial cattle feedlot in Texas.
Cattle were purchased from a single backgrounding facility and
were delivered in two groups of 193 and 186 steers (300–400 kg
body weight/animal). Cattle were housed in separate pens after
arrival (Day 1), and one group was randomly selected to be
treated metaphylactically with parenteral tulathromycin while
the other group served as an untreated control. All cattle in
the treated group received a subcutaneous injection of 800mg
tulathromycin (Draxxin R©; Zoetis, Florham, NJ) while cattle in
the untreated group did not. This single tulathromycin treatment
was expected to result in therapeutic tissue concentrations in
the lung for up to 14 days (Pfizer, 2007), and this drug has a
withdrawal period of 18 days in the U.S. with regard to slaughter
for human consumption of tissues (FDA, 2005). Essentially all of
this drug is eliminated unmetabolized from the body via biliary
excretion and subsequent fecal elimination. With the exception
of this treatment, both groups of cattle underwent identical
arrival processing, including administration of vaccines for
clostridial and respiratory diseases, avermectin anthelmintic, and
application of growth-promoting hormone implants (Table 1).
After initial processing and placement into pens, cattle were
fed the same corn-based diet throughout 11-day study period
which contained tylosin (also a macrolide class of antimicrobial)
to prevent liver abscesses at an FDA approved target intake of
90mg per head per day and ionophore feed additives (monensin)
conforming to nutritional recommendations of the National
Research Council (National Research Council, 2000). Cattle were
provided ad libitum access to water and their health and welfare
were monitored daily by trained feedlot personnel under the
supervision of consulting veterinarians.

Fecal samples were collected from cattle per rectum at
arrival (Day 1), and 11 days later (Day 11). After transport
to the laboratory, fecal samples were processed to isolate
total metagenomic DNA, upon which shotgun metagenomic
sequencing was performed. During the 11-day study period, no
cattle were identified as being ill, and therefore none received
additional therapeutic AMD treatments.

Sample Collection
A total of 379 fecal samples (≥25 g/sample) were obtained
per rectum from each steer at arrival processing, before
tulathromycin injection for the treated group, using individually
packaged sterile gloves. Each fecal sample was placed into a sterile
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TABLE 1 | Products administered to study cattle at the time of arrival-processing (Day 1).

Product type Commercial name Manufacturer Volume per

animal

Additional information

Antimicrobial* Draxxin Zoetis 8 cc Macrolide antimicrobial for treatment of cattle at high risk for

bovine respiratory disease (BRD).

Anthelmintic Noromectin Norbrooks labs 7 cc Ivermectin parasiticide for the treatment and control of internal and

external parasites of cattle.

Anthelmintic Safeguard Merck animal health 18 cc For use in beef cattle for the removal and control of lung, stomach

and intestine worms.

Vaccine BoviAnthelmintic-Shield GOLD Zoetis 2 cc Protects cattle from infectious bovine rhinotracheitis (IBR) and

bovine viral diarrhea (BVD).

Vaccine Vision® 7 Merck animal health 2 cc For use in healthy cattle as an aid in the preventing disease

caused by Clostridium spp.

Steroid implant Revalor-XS Merck animal health Implant Trenbolone acetate and estradiol. It improves rate of gain and feed

efficiency.

*Only the treated group received the antimicrobial treatment.

Whirl-Pak bag (Nasco). Fecal samples were then placed into
coolers with ice packs and transported to the laboratory within
8 h of sample collection for storage at −80◦C. As part of another
study evaluating methods for Salmonella enterica identification,
all samples were processed prior to freezer storage with aerobic
culture and lateral-flow immunoassay strips. Three cattle were
identified as culture-positive for S. enterica; these 3 animals
from the treated group and an additional 31 randomly selected
animals were chosen for sampling at the second sampling time.
On Day 11, these 34 cattle (17 per group) were again palpated
per rectum with sterile gloves to collect feces. Four animals
had minimal feces in the rectum at this time (2 per group);
therefore, fecal samples were collected from 30 cattle (15 per
group) and transported on ice to the laboratory for frozen
storage. Thus, a total of 60 fecal samples collected at the two time
points (Day 1 and Day 11) were selected for further genomic
investigation and were processed for shotgun metagenomic
sequencing.

DNA Extraction
The 60 fecal samples were thawed at room temperature and total
DNA was isolated. To remove excess plant debris and decrease
inhibitors in fecal DNA samples, 10 g from each sample were
mixed with 30mL of buffered peptone water (BPW), vigorously
shaken, and allowed to sediment for 10min. Supernatant was
transferred to sterile 50ml conical tubes and centrifuged at
4,300 ×g for 10min at 4◦C. Resulting pellets were rinsed with
5mL of molecular-grade 1X phosphate buffered saline (PBS) and
centrifuged again (4,300 ×g, for 10min, at 4◦C). After removal
of supernatant, total DNA was isolated from the pellet using
the PowerMax Soil DNA Isolation Kit (MO BIO Laboratories)
following the manufacturer’s protocol. DNA concentration and
quality were evaluated using a NanoDropTM spectrophotometer
(Thermo Fisher Scientific, Inc.). Samples with 260:280 nm
ratios >1.3 and DNA concentrations >20 ng/µl were sent
for sequencing; samples that did not meet the concentration
threshold were concentrated by ethanol precipitation before
sequencing.

DNA Library Preparation and Sequencing
Purified DNA (100 µl aliquots) from all 60 samples were
delivered to the Genomics and Microarray Core at University
of Colorado Denver (Aurora, CO) for library preparation
and sequencing. Genomic libraries were prepared using the
TruSeq DNA Library Preparation Kit (Illumina, Inc.) and
next-generation sequencing was completed on the HiSeq 2000
(Illumina, Inc.) with 5 samples per lane, V4 chemistry, and
paired-end reads of 125 bp in length.

Processing of Metagenomic Sequence
Data
De-multiplexed sequence reads were analyzed using the
AmrPlusPlus bioinformatic pipeline (Lakin et al., 2017). Starting
with read trimming and quality filtering using Trimmomatic
(Bolger et al., 2014), AmrPlusPlus then identifies host DNA with
alignment to the Bos taurus genome (Merchant et al., 2014)
using the Burrows-Wheeler-Aligner (BWA) software (Li, 2013)
and removes those reads with SamTools (Li et al., 2009) to create
non-host reads for subsequent characterization of the resistome
and microbiome.

Analysis of Sequencing Quality
The FastQC software (Andrews, 2010) was used to assess sample
read quality. Summary statistics regarding the number of raw,
trimmed, and non-host reads for each sample were compared
using generalized linear models with the “glm” function and
the R platform (R. Core Team, 2013) to assess systematic
bias across the following sequencing metadata: sequencing
run, batch, and lane. For study design metadata, primary
comparisons of interest were between treated vs. untreated
cattle, and between sampling time points (Day 1 vs. Day 11).
To test for potential DNA contamination, sample reads were
aligned to the human genome using BWA and the number of
successfully aligned reads in each sample were compared between
groups using the “wilcox.test” function. Similarly, differences
in sequencing results between sample groups were tested with
the Wilcoxon signed-rank test when comparing paired values
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from the same animal (Day 1–Day 11) and the Wilcoxon rank-
sum test was employed when comparing animals at either time
point.

Resistome: Identification of Resistance
Genes in Metagenomic Sequence Data
In order to identify reads matching to resistance genes in the 60
samples, reads were aligned with BWA to the databaseMEGARes
(Lakin et al., 2017), a non-redundant nucleotide database of
publicly available AMR gene sequences. For descriptive and
statistical analyses, only genes with >80% “gene fraction,”
defined as the percent of nucleotides in each AMR reference
gene that aligned to at least one read, were considered to be
present in a sample (Supplementary Data Sheet 1). All gene
accessions in the MEGARes database have been classified
into an acyclic taxonomic hierarchy (drug class, mechanism,
and group). Accessions in the MEGARes database that are
known to cause resistance as a result of single nucleotide
polymorphisms (SNPs) in genes otherwise not associated with
resistance were evaluated by visualizing the BWA alignments
with Integrative Genomics Viewer (Thorvaldsdóttir et al., 2013).
Reads were confirmed to align to the resistant allele sequence
with 100% peptide homology (to allow for silent nucleotide
substitutions) across the middle 95% of the reference AMR
gene. Genes identified in our samples and included in this
post-processing verification step were: parE, rpoB, phoP, phoQ,
evgS, evgA, crp, evgA, envR, marA, cpxA, cpxR, ompF, and
blaR. Any alignments that failed this verification step were
removed from downstream analyses, as those reads likely
represented wild-type DNA sequences that do not confer
resistance to antimicrobials. Additionally, critically important
resistance determinants (when expressed in human disease-
causing agents) were identified a priori: [bla(OXA), bla(SME),
bla(IMI), bla(NDM), bla(GES), bla(KPC), bla(cphA), bla(TEM),
bla(SHV), bla(CTX-M), bla(CMY), vga/vat, cfr]. Alignments to
these genes accessions were specifically searched for in all 60
samples.

Microbiome: Identification and
Classification of Bacterial Sequences
Kraken (version 1) (Wood and Salzberg, 2014) was used to
assign taxonomic labels to quality trimmed, paired non-host
reads (Supplementary Data Sheet 2). To employ NCBI’s RefSeq
“Release 86” from January 12, 2018 (O’Leary et al., 2016), we
created a custom kraken database consisting of RefSeq bacterial
and archaeal genomes classified as either “reference genome”
or “representative genome” and all complete viral genomes in
RefSeq. Based on the recommendation of kraken’s developers,
all low-complexity regions were masked using DUST (Morgulis
et al., 2006). Additionally, plasmid sequences were extracted from
the genomic files and assigned to the “unidentified plasmid” taxa
number ID “45202” to increase the specificity of taxonomic read
classification and account for the horizontal transfer of plasmids
in microbial communities (see full script at https://github.com/
colostatemeg/meglab-kraken-custom-db).

Statistical Analysis
Statistical analyses of the resistome and microbiome were
accomplished using R packages “metagenomeSeq” and
“vegan” (Paulson et al., 2013; Oksanen et al., 2014). Sparsely
represented resistome and microbiome features (genes and taxa,
respectively), which were identified in fewer than 5% of samples,
were removed from further analysis to reduce the likelihood
that these features would bias abundance comparisons (Paulson
et al., 2013). Two different methods were used to normalize
resistome and microbiome feature counts. Resistome counts
were normalized using an equation (Li et al., 2015) that allows
for AMR gene abundance to be expressed as “copy of AMR
gene per copy of 16S-rRNA gene” by accounting for differences
in sequence length of AMR genes and bacterial load in the
samples. Alignment to the full Greengenes database (DeSantis
et al., 2006) using BWA with default settings in a paired-end
manner was employed to identify 16S sequences in all non-host
reads. Subsequently, the “AMR gene abundance” of each gene
identified within a sample was calculated using the equation (Li
et al., 2015; Supplementary Data Sheet 3):

AMR gene abundance =

n∑

1

NAMR−likesequence × Lreads/LAMRreferencesequence

N16Ssequence × Lreads/L16Ssequence

with NAMR−likesequence as the number of alignments to one
specific AMR gene sequence; Lreads as the sequence length of
the Illumina reads (125 nt); LAMRreferencesequence as the sequence
length of the corresponding AMR gene sequence; N16Ssequence

as the number of alignments to 16S sequences; and L16Ssequence
as the average length of the 16S sequences in the Greengenes
database (mean = 1,401 nt). The resistome data were analyzed
at the class and mechanism levels to avoid biased diversity
measures caused by differences in the scientific criteria used
for identification and publication of new resistance genes for
different drug classes at the “gene” level (Hall and Schwarz,
2016). Alternatively, the numbers of reads that matched to
microbial taxa were normalized to account for sequencing depth
using cumulative sum scaling (CSS) (Paulson et al., 2013). The
sparseness of count data called for using a default percentile
of 0.5 for normalization based on published recommendations
(Paulson et al., 2013). Corresponding taxonomic lineage for
each taxon in the microbiome was identified and alignments
were summed to these 6 Linnaean taxonomic levels: phylum,
class, order, family, genus, and species. In total, there were 6
count matrices for the microbiome, but to reduce the repetitive
reporting of results at all levels and because results at lower
taxonomic levels are not considered very reliable (Peabody et al.,
2015), statistical results for microbiome are presented at the
phylum, class and order levels. In total, 8 unique normalized
count matrices (i.e., 6 count matrices describing the microbiome
and 2 count matrices characterizing the resistome) were analyzed
and reported. Figures were created using the base plotting
functions in R, the ggplot2 package (Wickham, 2009), and the
Tableau software (Murray and Chabot, 2013).
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Ordination Generation and Testing
Normalized count matrices were Hellinger-transformed
(Legendre and Gallagher, 2001) and used for ordination analysis
with the metaMDS function from “vegan.” The metaMDS
function employs non-metric multidimensional scaling (NMDS)
on Euclidian distances with random starts to discover a
stable ordination solution for plotting on two dimensions.
Significance of separation between sample groups was tested
using analysis of similarities (ANOSIM) (Clarke, 1993). To
assess the degree of correlation between the resistome and
microbiome, the “procrustes” function was used to superimpose
metaMDS ordination graphs and minimize the sum of squared
differences. In the same manner, the correlation between the
untreated and treated group’s microbiomes and resistomes were
calculated at both Day 1 and Day 11. Then, the function “protest”
was used to calculate a M2 statistic for each procrustes result
(Supplementary Data Sheet 4).

Richness and Diversity Comparisons
For all 8 count matrices, the richness (i.e., the total number of
unique features in each sample) and Shannon’s diversity (i.e.,
the number and proportion of unique features in each sample)
were compared between sample groups using the “wilcox.test”
function in R (Supplementary Data Sheet 4).

Analysis of Log-Fold Change in Abundance
In order to identify specific features in count matrices with
significantly different numbers of alignments between sample
groups, metagenomeSeq’s “fitZig” function (Paulson et al., 2013)
was used to fit multivariate zero-inflated Gaussian mixture
models for all 8 count matrices separately. To avoid spurious
feature comparisons, only features present in abundances
greater than the 15th quantile in each count matrix were
considered. Statistical models consisted of fixed effects for
sample group (e.g., treated vs. untreated, or Day 1 vs. Day 11)
and sequencing batch number. The option “useMixedModel”
and “block” was employed to account for repeated measures
on cattle. Pairwise comparisons of feature abundance between
sample groups were evaluated using limma’s “makeContrasts”
function (Ritchie et al., 2015) on the multivariate model, using
alpha = 0.05 on adjusted P-values as the cut-off value for
statistical significance. This function outputs an estimate of the
log2-fold change in abundance between groups for each feature
(i.e., class/mechanism/phylum/order/etc.) with an associated
P-value adjusted for multiple comparisons using the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995).

Data Submission
Quality-trimmed sequencing reads for all 60 samples described
in this project have been deposited to the NCBI collection
of biological data (BioProject). Accession PRJNA309291 ID:
309291.

RESULTS

Sequencing Results
Across all 60 samples, shotgun metagenomic sequencing
generated 5.89 billion reads (2.95 billion paired reads) with an

average of 49.1million paired-end reads per sample (range 13.49–
80.36M, Supplementary Data Sheet 5). The average Phred
quality score of raw reads across all samples was 35.2 (range
34.54–35.82) and only 4.4% of all reads were removed due to low
quality (minimum per sample = 2.48%, maximum = 8.21%). Of
the remaining reads, 19.69% (55.44M reads) were identified as
bovine DNA and removed from subsequent analysis; 3 samples
contained nearly 37% bovine DNA (probably because the feces
were relatively scant in the rectum of these cattle at the time
of sampling) and the other 57 samples ranged from 19.69 to
27.11%. Alignment of non-host reads to the human genome
identified on average 991,958 reads per sample (range= 210,246–
4,639,154) and suggested minimal sample contamination (2.6%
of reads across all 60 samples). There was a small, statistically
significant difference in Phred scores when comparing samples
by time and treatment due to high quality reads in all 60 samples
(mean = 35.23, range = 34.54–35.82). This difference was not
considered to be biologically meaningful. Additionally, because
no other metadata comparisons yielded statistically significant
differences, our results suggested that there was no systematic
bias in sequencing effort.

Resistome Composition
4,054,637 reads aligned to 208 AMR gene accessions in the
MEGARes reference database. Following confirmation of genes
conferring resistance due to single nucleotide polymorphisms
(SNPs) and removal of sparsely represented genes (i.e., those
found in <3 samples), there were 134 unique gene accessions
in the MEGARes database that were identified from 3,773,873
reads. In all, these represented resistance to 9 unique AMR
drug classes via 24 mechanisms of resistance, though the clear
majority of reads aligned to gene accessions that confer resistance
to tetracycline and the macrolide-lincosamide-streptogramin
(MLS) class of antibiotics (76 and 18% of aligned reads,
respectively). More than 99% of the reads that aligned to
tetracycline resistance gene accessions are known to confer
resistance through ribosomal protection proteins, and 77% of
the reads that aligned to MLS resistance gene accessions are
known to confer resistance through macrolide efflux pumps. The
remaining AMR features were identified in low abundance across
all study samples and consisted of gene accessions associated
with multi-drug resistance (e.g., non-specific multi-drug efflux
pumps) and resistance to the following drug classes; phenicol,
bacitracin, fluoroquinolones, cationic antimicrobial peptides,
aminoglycosides, and betalactams. This pattern of fecal resistome
composition was observed in both study groups and was seen
in samples collected at both Day 1 and Day 11 (Figure 1).
Of the a priori identified critically important resistance
determinants, we only identified one AMR gene accession,
bla(CTX-M), in a single sample from the treated group on
Day 11.

The overall resistome composition was similar between
the treated and untreated groups at both Day 1 and Day
11 (Figure 2). Apart from alignments to tetracyclines and
MLS gene accessions, <3% of the resistome was characterized
by alignments to multi-drug, betalactam, and aminoglycoside
resistance gene accessions, with alignments to remaining classes
of drugs each accounting for <1% of all alignments. While
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FIGURE 1 | Total AMR gene abundance determined by shotgun metagenomic sequencing and normalized using 16S rRNA abundance, by drug class, among

treated and untreated cattle in samples obtained at Day 1 and again at Day 11. Values are formulated from the number of reads that aligned to AMR genes and

normalized to bacterial abundance characterized by alignments to 16S gene sequences from the Greengenes database.

we did identify a difference in AMR Shannon’s diversity when
comparing treated and untreated cattle at Day 1 (P = 0.05),
there was no evidence of significant differences in the relative
abundances of AMR classes or mechanisms. In contrast by Day
11, the untreated group had significantly different AMR richness
at the mechanism level (P = 0.02) and contained significantly
higher abundance for the AMR mechanism, Tetracycline
inactivation enzymes, than the treated group (P < 0.05).

In contrast to the lack of difference between treated and
untreated groups at both time points, there was a dramatic
change in the resistome of both groups between Day 1 and
Day 11, such that there appeared to be a convergence toward
a “common” resistome between groups. The untreated group’s
resistome shifted significantly at the class (ANOSIM R = 0.22,
P= 0.002) andmechanism levels (ANOSIMR= 0.30, P= 0.001),
as did the resistome of the treated cattle (ANOSIM R = 0.21,
P = 0.001 for AMR drug class and ANOSIM R= 0.40, P = 0.001
for AMR mechanism) (Figure 2). In both study groups, total
AMR abundance, defined as “copies of alignments to AMR
gene accessions per copy of 16S-rRNA gene”, increased over
time (Day 1–Day 11) from 3.04 to 5.29 in the untreated group
and from 3.71 to 5.56 in the treated group. Consequently, the
relative abundance of alignments to the two most abundant
AMR classes, tetracyclines and MLS, increased between Day 1
and Day 11 for both the treated and untreated groups (P <

0.05). The untreated group’s resistome increased in abundance
in two additional AMR classes, aminoglycoside and betalactam
resistance (P < 0.05) albeit without exposure to these drugs.
Correspondingly, the untreated group’s significant changes in
abundance were all increases in relative abundance of alignments

to 5 of 20 resistance mechanisms between Day 1 and Day 11
(P < 0.05). Alternatively, the treated group had 15 mechanisms
with significant changes in abundance, but 10 of 15 mechanisms
decreased in abundance over time (Figure 3). Three AMR
mechanisms increased in relative abundance in both groups,
including tetracycline resistance ribosomal protection proteins,
macrolide resistance efflux pumps, and class A betalactamases.
The other 2 AMR mechanisms that increased in abundance
over time differed by treatment group; aminoglycoside O-
phosphotransferases and aminoglycoside N-acetyltransferases
in the treated group, compared to increases in alignments
to tetracycline inactivation enzymes and chloramphenicol
acetyltransferases in the untreated group. Shannon’s diversity
indices of the treated group at the mechanism level decreased
significantly over time (P = 0.04), whereas there were no
significant changes in richness or Shannon’s diversity in
untreated group (Figure 4). During these shifts in the resistome
over time, procrustes analysis suggests that class level AMR
resistome composition of treated and untreated cattle became
more similar as they were significantly correlated only at Day 11
(M2 = 0.71, P = 0.02).

While major trends in the most abundant AMR features can
be observed at the treatment group level, there was considerable
variation in the presence of low abundance AMR mechanisms
between animals (Supplementary Image 1). Interestingly, the
number of samples with alignments to phenicol and glycopeptide
AMR classes increased over time in both study groups, though
differential abundance comparisons were not possible due to
their low abundance and sparse representation across all 60
samples. There were no samples with phenicol resistance gene
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FIGURE 2 | Ordination comparing resistome composition at the AMR drug class and resistance mechanism, using non-metric multidimensional scaling (NMDS), for

the two study groups at Day 1 and Day 11. Separation of resistomes from treated and untreated cattle was not statistically significant at either Day 1 or Day 11 (Day 1

vs. Day 11; ANOSIM P > 0.05). However, the resistomes of the treated and untreated groups were significantly separated over time (Day 1 vs. Day 11; ANOSIM P <

0.05).

accessions at Day 1, but alignments were present in 8 of 15 cattle
from each treatment group by Day 11. Similarly, no samples
had alignments to glycopeptide resistance gene accessions at Day
1; however, by Day 11 glycopeptide class resistance genes were
identified in 3 of 15 untreated animals. It is important to note
that no glycopeptide antimicrobials had ever been used in these
cattle or in this facility, as this is illegal in cattle production in the
U.S.

Microbiome Composition
On average, 96.14% of sample reads were not classified
as bacteria, archaea, or viruses (range = 93.71–96.98%).
Alignments to a total of 5,910 taxa were identified across
the 60 samples. Sparsely represented taxa were removed
prior to normalization such that a total of 5,383 unique
taxa were included in subsequent analyses (comprising
alignments attributed to 38 phyla, 74 classes, 170 orders,
384 families, 1,211 genera and 3,943 species). The majority
of microbiome alignments were to bacteria; alignments to
Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria
were most common, accounting for 99.7% of the total
normalized hit counts at the phylum level (37, 24, 18, and 15%,
respectively). At the class level, Clostridia (29%), Bacteroidia
(21%), Gammaproteobacteria (10%), and Coriobacteriia (7%)

were the predominant classes to which alignments were
classified, representing more than two thirds of normalized
counts. Clostridiales (32%), Bacteroidales (21%), and
Enterobacteriales (6%) were the most abundant taxa at the
order level (Figure 5).

No significant differences in the overall microbiome were
observed between treated and untreated groups at Day 1
(ANOSIM P > 0.05), and taxa were not differentially abundant
at the phyla, class, or order level after adjusting for multiple
comparisons. Similarly, at Day 11, ordination comparisons
showed no distinct separation of microbial communities between
the treated and untreated groups (Figure 6), and relative
abundance of microbiome features did not differ at the phyla,
class, or order levels. Moreover, richness and Shannon’s diversity
did not differ significantly between groups at either Day 1 or Day
11 (Figure 7). Unlike the resistome, procrustes analysis did not
identify significant correlations between the groups’ microbiomes
at either time point.

Despite evidence suggesting that both groups had similar
fecal microbiomes at Day 1 and Day 11, the composition
shifted significantly over time in the feedlot at all microbiome
levels for both the untreated group (phylum level: ANOSIM
R = 0.51, P = 0.001) and the treated group (phylum
level: ANOSIM R = 0.50, P = 0.001). The major shift
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FIGURE 3 | Log-fold change in abundance to AMR mechanisms for the treated (red bars) and untreated (gray bars) over time from Day 1 to day11. Bars to the right

of the 0-line signify an increase in abundance, the size of the bars represent the average expression of the AMR mechanism and bars are labeled with adjusted

p-values < 0.05.

that occurred in the composition of both study groups’
microbiomes between sampling dates was characterized by an
increase in the proportion of Actinobacteria and Firmicutes,
which together accounted for 58% of the untreated and
64% of the treated group’s resistome at Day 11 compared
to 51 and 45% at Day 1, respectively (Figure 5). In the
treated group, 17 of 38 phyla show significant changes in
abundance over time, although there were only shifts in 7 of
38 phyla in the untreated group. Both groups’ microbiome
significantly increased in relative abundance of Firmicutes and
Actinobacteria phyla, combined with a decrease in relative
abundance of Gemmatimonadetes, Euryarchaeota, Candidatus
Saccharibacteria, and Candidatus Planctomycetes (P < 0.05). Of
the remaining phyla with significant changes in the treated cattle,
4 of 10 taxa increased in relative abundance, while the other
6 phyla decreased in abundance (P < 0.05). Notwithstanding

the major changes in microbiome composition, neither richness
nor Shannon’s diversity measures changed over time in either
group.

Relationships Between the Fecal
Resistome and Microbiome
Procrustes analyses suggests no statistically significant
correlations were present between the resistome andmicrobiome
within treatment groups at either time point (P> 0.05).

DISCUSSION

Results of this study suggest that parenteral metaphylactic
treatment of cattle with tulathromycin had minimal, if any,
detectable short-term impact on the fecal resistome and
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FIGURE 4 | Boxplot of resistome richness and Shannon’s diversity at the AMR class and mechanism levels of the two study groups at Day 1 and Day 11. The

horizontal line is the median value, the middle box indicates the inter-quantile range, whiskers represent values within 1.5 IQR of the lower and upper quartiles, and

individual points show outlier values.

microbiome of commercially raised feedlot cattle when evaluated
using shotgun metagenomic sequencing. This is important
because of critical concerns about public health in relation to
AMD use in food-producing animals and also because this is
an important drug for treatment and control of life-threatening
respiratory disease in feedlot cattle. This study was conducted
in a commercial feedlot operation to improve the practical
relevance of our findings, but this also introduces important
limitations. USDA data suggests that over 70% of feedlot cattle
in the U.S. receive low doses of tylosin, a macrolide drug, in-
feed for prevention of liver abscesses (USDA, 2013).While tylosin
exposure of all study cattle may have confounded our ability to
independently investigate the effects of tulathromycin (a different
macrolide drug), this study aims to characterize the effect of
additional metaphylactic treatment in the context of commercial
feedlot cattle production systems. Likewise, other studies have
described that parenteral treatment with a tetracycline drug
(oxytetracycline) can cause discernible changes in AMR even
when cattle are also exposed to another in-feed tetracycline AMD
(chlortetracycline) (O’Connor et al., 2002; Holman et al., 2018).
Comparing fecal samples collected at Day 1 to those collected on

Day 11 uncovered several notable changes in the resistome and
microbiome, suggesting that the transition from backgrounding
operations to concentrated feeding in a commercial feedlot is
a critical time for influencing the microbial community of beef
cattle. The ancient phenomena of AMR is not likely to be
eliminated frommicrobial communities in natural environments
(D’Costa et al., 2011), so techniques used to manage food animal
populations (e.g., AMD use, diet changes, prebiotics, probiotics)
need be evaluated as a way to support animal health and
productivity while reducing AMR prevalence and transmission
(Gaggìa et al., 2010; McCann et al., 2014). This study provides an
ecological perspective suggesting metaphylactic tulathromycin
treatment may be employed without incurring drastic changes to
the resistome and microbiome of typical feedlot cattle.

Between treated and untreated groups, shifting abundance
from Day 1 to Day 11 in resistome and microbiome features
differed by treatment, but ultimately maintained a “common”
composition and total AMR abundance comprised principally
of relatively few, highly-abundant taxa. In particular, procrustes
analysis for the correlation between the groups’ resistome was
only significant at Day 11. Further, the resistome andmicrobiome
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FIGURE 5 | Average relative abundance of CSS normalized counts of shotgun metagenomic reads aligning to bacterial, archaeal and viral genomes at the phylum

level for both study groups at Day 1 and Day 11. Phyla comprising <3% of each sample group were combined into the category “Low abundance phyla”.

of treated and untreated groups were largely similar on Day 11,
suggesting that other selective pressures besides tulathromycin
metaphylaxis (e.g., common environmental exposures, exposure
of all study cattle to in-feed tylosin) are potentially stronger
influences on changes to the resistome and microbiome in cattle
that have been newly introduced to the feedlot environment.
Limited sample size of 15 animals per treatment group could
limit statistical power to detect differences in the resistome and
microbiome caused by tulathromycin exposure, but a search
of the relevant literature indicated a lack of power calculation
tools for shotgun metagenomic sequencing experiments. The
difference in Shannon’s diversity observed between treated and
untreated cattle could have occurred because individual cattle
randomization into the two pens was not logistically feasible due
to constraints imposed by the feedlot operator. Specifically, to
address logistical complexities in cattle production, the cattle in
this study were shipped in two separate container trucks from the
backgrounding facility, and these separate groups automatically
became the treated and untreated groups upon arrival in the
feedlot, as they were housed in separate pens due to arrival
processing considerations. Nevertheless, this study contributes
an ecological perspective into the microbial communities of
individual feedlot cattle and emphasizes the utility of studying
the bacterial community in beef feedlot operations to better
characterize AMR dynamics.

This study verifies past reports that tetracycline and MLS
resistance is commonly identified in cattle environments (Ghosh
and LaPara, 2007; Chen et al., 2008; Platt et al., 2008; Kyselková
et al., 2015). Consistent with our group’s previous research,
resistome composition was largely dominated by the abundance

of sequence alignments to two mechanisms of resistance,
representing tetracycline (ribosomal protection proteins) and
MLS (macrolide efflux pump) classes of resistance which
accounted for >60% and >28% of resistance in the treated and
untreated study groups (Noyes et al., 2016a,b). It is notable that
there were no other parenteral antimicrobial drug treatments
because of illness in the study cattle prior to Day 11, including a
lack of exposure to drugs commonly used to treat illness in feedlot
cattle such as tetracyclines, betalactams, and fluoroquinolones.
It is possible that this influenced the decrease in alignments
to AMR gene accessions in samples from both groups that
encode for resistance to drugs not used in the study, such as
bacitracin and fluoroquinolone. Interestingly, glycopeptide drug
use is prohibited in beef cattle in the U.S., and while resistance
was not identified at Day 1, three animals in the untreated
group contained alignments to glycopeptide gene accessions.
Similarly, chloramphenicol resistance was not identified at Day
1 and despite study cattle not being exposed to chloramphenicol
drugs, at Day 11 both groups of cattle had 8 of 15 animals with
alignments to chloramphenicol resistance gene accessions.

For the microbiome, time in the feedlot from Day 1 to
Day 11 was associated with significant shifts in the microbial
population in both groups, though ultimately maintained similar
composition that was dominated by Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria. Temporal changes in the
microbiome of cattle acclimatizing to feedlot rearing have
reported dramatic changes in the nasopharyngeal microbiota
of beef cattle after arrival at a feedlot (Holman et al., 2015;
Timsit et al., 2016). These shifts in the fecal microbiome
might be expected given the changes cattle are experiencing
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FIGURE 6 | Ordination comparing microbiome composition at the phylum, class, and order levels, using non-metric multidimensional scaling (NMDS), for treated and

untreated groups of cattle at Day 1 and Day 11. Separation of microbiomes from treated and untreated cattle was not statistically significant at either Day 1 or Day 11

(treated vs. untreated; ANOSIM P > 0.05). However, microbiomes for the study groups differed significantly over time (Day 1 vs. Day 11; ANOSIM P < 0.05).

after arrival to the feedlot. In the microbiome of both groups,
for example, we detected an increase of typical carbohydrate-
digesting bacteria such as Lactobacillales, along with an increase
of organisms with diverse metabolic functions within the phyla
Firmicutes from Day 1 to Day 11 (Fernando et al., 2010;
Petri et al., 2013; Yang et al., 2016). Notably, the exposure
to tulathromycin might have caused the decrease in relative
abundance to the Proteobacteria and Verrucomicrobia phyla in
the treated group. Both phyla consist of gram negative bacteria
not typically considered macrolide targets, but their decrease
in relative abundance is associated with concurrent increases in
Firmicutes as reported with exposure a different macrolide drug,
azithromycin (Parker et al., 2017). This corroborates previously
published data asserting that microbiome similarity between
cattle is strongly driven by exposure to comparable management
practices and/or the same geographic region (Shanks et al.,
2011).

Though we were not able to obtain information about the
management of study cattle prior to arrival at the feedlot (i.e.,

source of cattle, diet, antimicrobial use, etc.), the lack of major
differences in the resistome between groups at Day 1 might be
attributed to rearing in the same backgrounding facility under
similar husbandry practices immediately prior to being shipped
to the feedlot. It is important to note that the lack of difference
between treated and untreated groups either at Day 1 or Day
11 could also be explained by the high abundance of sequences
(>90% relative abundance) coding for resistance to tetracyclines
and MLS making a “core” resistome which could potentially
mask important differences in less abundant resistance genes
(Chambers et al., 2015). The pharmacokinetics of tulathromycin
tissue concentration have been previously described (Evans,
2005), so the choice of 11 days between sampling points ensured
that tulathromycin was still in therapeutic concentrations, but its
influence on the fecal resistome and microbiome is undefined
and future studies should consider time series sampling to
capture temporo-dynamic changes in AMR ecology. Future
research is needed to estimate the risk of different resistome
compositions compared to our understanding from AMR
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FIGURE 7 | Boxplot of microbiome richness and Shannon’s diversity at the phylum, class and order levels of the two study groups at Day 1 and Day 11. The

horizontal line is the median value, the middle box indicates the inter-quantile range, whiskers represent values within 1.5 IQR of the lower and upper quartiles, and

individual points show outlier values.

patterns found in certain pathogens through traditional culture-
based approaches. Additionally, while sequencing processes and
bioinformatic analyses techniques continue to improve, we need
broad collaboration from the scientific community to standardize
AMR gene nomenclature and bioinformatic analysis so that
results can be comparable across studies (Hall and Schwarz, 2016;
Quince et al., 2017).
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