Ainfo Consulta

Catálogo de Información Agropecuaria

Bibliotecas INIA

 

Botón Actualizar


Botón Actualizar

Registro completo
Biblioteca (s) :  INIA Las Brujas.
Fecha :  22/11/2024
Actualizado :  22/11/2024
Tipo de producción científica :  Artículos en Revistas Indexadas Internacionales
Autor :  PÉREZ, O.; DIERS, B.; MARTIN, N.
Afiliación :  OSVALDO MARTIN PEREZ GONZALEZ, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; BRIAN DIERS, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; NICOLÁS MARTIN, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Título :  Maturity prediction in soybean breeding using aerial images and the random forest machine learning algorithm.
Fecha de publicación :  2024
Fuente / Imprenta :  Remote Sensing, 2024, Volume 16, Issue 23, 4343; https://doi.org/10.3390/rs16234343 -- OPEN ACCESS.
ISSN :  2072-4292
DOI :  10.3390/rs16234343
Idioma :  Inglés
Notas :  Article history: Submission received 27 September 2024, Revised 24 October 2024, Accepted 5 November 2024, Published 21 November 2024. -- Academic editors: Wei Su, Quanjun Jiao, Bo Liu, Xing Li, Qiaoyun Xie. -- Funding: This research received funding from North Central Soybean Research Program, (NCSRC), "SOYGEN 3: Building capacity to increase soybean genetic gain for yield and composition through combining genomics-assisted breeding with characterization of future environments". -- This article belongs to the Special Issue Remote Sensing and Machine Learning in Vegetation Biophysical Parameters Estimation (Second Edition)(https://www.mdpi.com/journal/remotesensing/special_issues/G6CM96JWQY) . -- License: This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Contenido :  ABSTRACT.- Several studies have used aerial images to predict physiological maturity (R8 stage) in soybeans (Glycine max (L.) Merr.). However, information for making predictions in the current growing season using models fitted in previous years is still necessary. Using the Random Forest machine learning algorithm and time series of RGB (red, green, blue) and multispectral images taken from a drone, this work aimed to study, in three breeding experiments of plant rows, how maturity predictions are impacted by a number of factors. These include the type of camera used, the number and time between flights, and whether models fitted with data obtained in one or more environments can be used to make accurate predictions in an independent environment. © 2024 by the authors. Licensee MDPI, Basel, Switzerland.
Palabras claves :  Agriculture; High-throughput phenotyping; Machine learning; Physiological maturity; Plant breeding; SISTEMA AGRÍCOLA-GANADERO - INIA; UAV; Vegetation indices.
Asunto categoría :  F01 Cultivo
URL :  https://www.mdpi.com/2072-4292/16/23/4343/pdf
Marc :  Presentar Marc Completo
Registro original :  INIA Las Brujas (LB)
Biblioteca Identificación Origen Tipo / Formato Clasificación Cutter Registro Volumen Estado
LB104266 - 1PXIAP - DDRemote Sensing/2024

Volver

No hay resultados para la expresión de búsqueda informada registros.
Expresión de búsqueda válido. Check!
 
 

Embrapa
Todos los derechos reservados, conforme Ley n° 9.610
Política de Privacidad
Área Restricta

Instituto Nacional de Investigación Agropecuaria
Andes 1365 - piso 12 CP 11100 Montevideo, Uruguay
Tel: +598 2902 0550 Fax: +598 2902 3666
bibliotecas@inia.org.uy

Valid HTML 4.01 Transitional