|
|
| Acceso al texto completo restringido a Biblioteca INIA Treinta y Tres. Por información adicional contacte bibliott@inia.org.uy. |
Registro completo
|
Biblioteca (s) : |
INIA Treinta y Tres. |
Fecha : |
16/10/2018 |
Actualizado : |
11/02/2019 |
Tipo de producción científica : |
Artículos en Revistas Indexadas Internacionales |
Autor : |
BORGES, A.; GONZÁLEZ-REYMUNDEZ, A.; ERNST, O.; CADENAZZI, M.; TERRA, J.A.; GUTIÉRREZ, L. |
Afiliación : |
ALEJANDRA BORGES, Departamento de Estadística. Facultad de Agronomía, UdelaR.; AGUSTÍN GONZÁLEZ-REYMUNDEZ, Departamento de Estadística. Facultad de Agronomía, UdelaR.; OSVALDO, ERNST, Departamento de Producción de Cultivos. EEMAC, Facultad de Agronomía, UdelaR.; MÓNICA CADENAZZI, Departamento de Estadística. Facultad de Agronomía, UdelaR.; JOSÉ ALFREDO TERRA FERNÁNDEZ, INIA (Instituto Nacional de Investigación Agropecuaria), Uruguay; LUCÍA GUTIÉRREZ, Department of Agronomy, University of Wisconsin. |
Título : |
Can spatial modeling substitute experimental design in agricultural experiments? |
Fecha de publicación : |
2018 |
Fuente / Imprenta : |
Crop Science, 2018, v. 59, no. 1, p. 1-10. |
DOI : |
10.2135/cropsci2018.03.0177 |
Idioma : |
Inglés |
Notas : |
Article history: Accepted paper, posted 10/05/18. Published online December, 13. 2018. |
Contenido : |
Abstract:
One of the most critical aspects of agricultural experimentation is the proper choice of experimental design to control field heterogeneity, especially for large experiments. However, even with complex experimental designs, spatial variability may not be properly controlled if it occurs at scales smaller than blocks. Therefore, modeling spatial variability can be beneficial and some studies even propose spatial modeling instead of experimental design. Our goal was to evaluate the effect of experimental design, spatial modeling, and a combination of both under real field conditions using GIS and simulating experiments. Yield data from cultivars was simulated using real spatial variability from a large uniformity trial of one hundred independent locations and different sizes of experiments for four experimental designs: completely randomized design (CRD), randomized complete block design (RCBD), alpha-lattice incomplete block design (ALPHA), and partially replicated design (PREP). Each realization was analyzed using different levels of spatial correction. Models were compared by precision, accuracy, and the recovery of superior genotypes. For moderate and large experiment sizes, ALPHA was the best experimental design in terms of precision and accuracy. In most situations, models that included spatial correlation were better than models with no spatial correlation but they did not outperformed better experimental designs. Therefore, spatial modeling is not a substitute for good experimental design. MenosAbstract:
One of the most critical aspects of agricultural experimentation is the proper choice of experimental design to control field heterogeneity, especially for large experiments. However, even with complex experimental designs, spatial variability may not be properly controlled if it occurs at scales smaller than blocks. Therefore, modeling spatial variability can be beneficial and some studies even propose spatial modeling instead of experimental design. Our goal was to evaluate the effect of experimental design, spatial modeling, and a combination of both under real field conditions using GIS and simulating experiments. Yield data from cultivars was simulated using real spatial variability from a large uniformity trial of one hundred independent locations and different sizes of experiments for four experimental designs: completely randomized design (CRD), randomized complete block design (RCBD), alpha-lattice incomplete block design (ALPHA), and partially replicated design (PREP). Each realization was analyzed using different levels of spatial correction. Models were compared by precision, accuracy, and the recovery of superior genotypes. For moderate and large experiment sizes, ALPHA was the best experimental design in terms of precision and accuracy. In most situations, models that included spatial correlation were better than models with no spatial correlation but they did not outperformed better experimental designs. Therefore, spatial modeling is not a substitut... Presentar Todo |
Palabras claves : |
EFFICIENCY STATISTICS; EXPERIMENTAL DESIGN; FIELD VARIABILITY; SPATIAL MODELS; UNIFORMITY TRIAL. |
Thesagro : |
DISENO ESTADISTICO; DISENO EXPERIMENTAL; MODELOS ESTADISTICOS; VARIABILIDAD. |
Asunto categoría : |
U30 Métodos de investigación |
Marc : |
LEADER 02512naa a2200313 a 4500 001 1059193 005 2019-02-11 008 2018 bl uuuu u00u1 u #d 024 7 $a10.2135/cropsci2018.03.0177$2DOI 100 1 $aBORGES, A. 245 $aCan spatial modeling substitute experimental design in agricultural experiments?$h[electronic resource] 260 $c2018 500 $aArticle history: Accepted paper, posted 10/05/18. Published online December, 13. 2018. 520 $aAbstract: One of the most critical aspects of agricultural experimentation is the proper choice of experimental design to control field heterogeneity, especially for large experiments. However, even with complex experimental designs, spatial variability may not be properly controlled if it occurs at scales smaller than blocks. Therefore, modeling spatial variability can be beneficial and some studies even propose spatial modeling instead of experimental design. Our goal was to evaluate the effect of experimental design, spatial modeling, and a combination of both under real field conditions using GIS and simulating experiments. Yield data from cultivars was simulated using real spatial variability from a large uniformity trial of one hundred independent locations and different sizes of experiments for four experimental designs: completely randomized design (CRD), randomized complete block design (RCBD), alpha-lattice incomplete block design (ALPHA), and partially replicated design (PREP). Each realization was analyzed using different levels of spatial correction. Models were compared by precision, accuracy, and the recovery of superior genotypes. For moderate and large experiment sizes, ALPHA was the best experimental design in terms of precision and accuracy. In most situations, models that included spatial correlation were better than models with no spatial correlation but they did not outperformed better experimental designs. Therefore, spatial modeling is not a substitute for good experimental design. 650 $aDISENO ESTADISTICO 650 $aDISENO EXPERIMENTAL 650 $aMODELOS ESTADISTICOS 650 $aVARIABILIDAD 653 $aEFFICIENCY STATISTICS 653 $aEXPERIMENTAL DESIGN 653 $aFIELD VARIABILITY 653 $aSPATIAL MODELS 653 $aUNIFORMITY TRIAL 700 1 $aGONZÁLEZ-REYMUNDEZ, A. 700 1 $aERNST, O. 700 1 $aCADENAZZI, M. 700 1 $aTERRA, J.A. 700 1 $aGUTIÉRREZ, L. 773 $tCrop Science, 2018$gv. 59, no. 1, p. 1-10.
Descargar
Esconder MarcPresentar Marc Completo |
Registro original : |
INIA Treinta y Tres (TT) |
|
Biblioteca
|
Identificación
|
Origen
|
Tipo / Formato
|
Clasificación
|
Cutter
|
Registro
|
Volumen
|
Estado
|
Volver
|
|
Registros recuperados : 4 | |
1. | | BORGES, A.; GONZÁLEZ-REYMUNDEZ, A.; ERNST, O.; CADENAZZI, M.; TERRA, J.A.; GUTIÉRREZ, L. Can spatial modeling substitute experimental design in agricultural experiments? Crop Science, 2018, v. 59, no. 1, p. 1-10. Article history: Accepted paper, posted 10/05/18. Published online December, 13. 2018.Tipo: Artículos en Revistas Indexadas Internacionales | Circulación / Nivel : Internacional - -- |
Biblioteca(s): INIA Treinta y Tres. |
| |
2. | | GUTIERREZ, L.; BORGES, A.; QUERO, G.; GONZALEZ-REYMUNDEZ, A.; BERRO, I.; LADO, B.; CASTRO, A. Biostatistical tools for plant breeding in the genomics era. In: German, S.; Quincke, M.; Vázquez, D.; Castro, M.; Pereyra, S.; Silva, P.; García, A. (Eds.). Seminario Internacional "1914-2014: Un siglo de mejoramiento de trigo en La Estanzuela". Montevideo (UY): INIA, 2018. p.46-57. (INIA Serie Técnica; 241).Tipo: Capítulo en Libro Técnico-Científico |
Biblioteca(s): INIA La Estanzuela. |
| |
3. | | BORGES, A.; GONZÁLEZ-REYMÚNDEZ, A.; ERNST, O.; CADENAZZI, M.; TERRA, J.A.; GUTIÉRREZ, LUCÍA Modelación espacial y diseños experimentales en experimentos agrícolas. In: UNIVERSIDAD DE LA REPÚBLICA (UDELAR). FACULTAD DE AGRONOMÍA. Resúmenes. Jornadas de Investigación, 8-9 nov., 2018, Montevideo, Uruguay. Montevideo; FAGRO, 2019. p. 15Tipo: Abstracts/Resúmenes |
Biblioteca(s): INIA Treinta y Tres. |
| |
4. | | BRANDARIZ, S.P.; GONZÁLEZ-REYMÚNDEZ, A.; LADO, B.; QUINCKE, M.; VON ZITZEWITZ, J.; CASTRO, M.; MATUS, I.; DEL POZO, A.; GUTIÉRREZ , L. Effect of using imputed missing data on QTL detection on a wheat GWAS panel. [Poster]. In: German, S.; Quincke, M.; Vázquez, D.; Castro, M.; Pereyra, S.; Silva, P.; García, A. (Eds.). Seminario Internacional "1914-2014: Un siglo de mejoramiento de trigo en La Estanzuela". Montevideo (UY): INIA, 2018. p. 304. (INIA Serie Técnica; 241).Biblioteca(s): INIA La Estanzuela. |
| |
Registros recuperados : 4 | |
|
Expresión de búsqueda válido. Check! |
|
|